⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 s_aaline.c

📁 mesa-6.5-minigui源码
💻 C
📖 第 1 页 / 共 2 页
字号:
/* * Mesa 3-D graphics library * Version:  6.1 * * Copyright (C) 1999-2004  Brian Paul   All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */#include "glheader.h"#include "imports.h"#include "macros.h"#include "swrast/s_aaline.h"#include "swrast/s_context.h"#include "swrast/s_span.h"#include "swrast/swrast.h"#include "mtypes.h"#define SUB_PIXEL 4/* * Info about the AA line we're rendering */struct LineInfo{   GLfloat x0, y0;        /* start */   GLfloat x1, y1;        /* end */   GLfloat dx, dy;        /* direction vector */   GLfloat len;           /* length */   GLfloat halfWidth;     /* half of line width */   GLfloat xAdj, yAdj;    /* X and Y adjustment for quad corners around line */   /* for coverage computation */   GLfloat qx0, qy0;      /* quad vertices */   GLfloat qx1, qy1;   GLfloat qx2, qy2;   GLfloat qx3, qy3;   GLfloat ex0, ey0;      /* quad edge vectors */   GLfloat ex1, ey1;   GLfloat ex2, ey2;   GLfloat ex3, ey3;   /* DO_Z */   GLfloat zPlane[4];   /* DO_FOG */   GLfloat fPlane[4];   /* DO_RGBA */   GLfloat rPlane[4], gPlane[4], bPlane[4], aPlane[4];   /* DO_INDEX */   GLfloat iPlane[4];   /* DO_SPEC */   GLfloat srPlane[4], sgPlane[4], sbPlane[4];   /* DO_TEX or DO_MULTITEX */   GLfloat sPlane[MAX_TEXTURE_COORD_UNITS][4];   GLfloat tPlane[MAX_TEXTURE_COORD_UNITS][4];   GLfloat uPlane[MAX_TEXTURE_COORD_UNITS][4];   GLfloat vPlane[MAX_TEXTURE_COORD_UNITS][4];   GLfloat lambda[MAX_TEXTURE_COORD_UNITS];   GLfloat texWidth[MAX_TEXTURE_COORD_UNITS];   GLfloat texHeight[MAX_TEXTURE_COORD_UNITS];   struct sw_span span;};/* * Compute the equation of a plane used to interpolate line fragment data * such as color, Z, texture coords, etc. * Input: (x0, y0) and (x1,y1) are the endpoints of the line. *        z0, and z1 are the end point values to interpolate. * Output:  plane - the plane equation. * * Note: we don't really have enough parameters to specify a plane. * We take the endpoints of the line and compute a plane such that * the cross product of the line vector and the plane normal is * parallel to the projection plane. */static voidcompute_plane(GLfloat x0, GLfloat y0, GLfloat x1, GLfloat y1,              GLfloat z0, GLfloat z1, GLfloat plane[4]){#if 0   /* original */   const GLfloat px = x1 - x0;   const GLfloat py = y1 - y0;   const GLfloat pz = z1 - z0;   const GLfloat qx = -py;   const GLfloat qy = px;   const GLfloat qz = 0;   const GLfloat a = py * qz - pz * qy;   const GLfloat b = pz * qx - px * qz;   const GLfloat c = px * qy - py * qx;   const GLfloat d = -(a * x0 + b * y0 + c * z0);   plane[0] = a;   plane[1] = b;   plane[2] = c;   plane[3] = d;#else   /* simplified */   const GLfloat px = x1 - x0;   const GLfloat py = y1 - y0;   const GLfloat pz = z0 - z1;   const GLfloat a = pz * px;   const GLfloat b = pz * py;   const GLfloat c = px * px + py * py;   const GLfloat d = -(a * x0 + b * y0 + c * z0);   if (a == 0.0 && b == 0.0 && c == 0.0 && d == 0.0) {      plane[0] = 0.0;      plane[1] = 0.0;      plane[2] = 1.0;      plane[3] = 0.0;   }   else {      plane[0] = a;      plane[1] = b;      plane[2] = c;      plane[3] = d;   }#endif}static INLINE voidconstant_plane(GLfloat value, GLfloat plane[4]){   plane[0] = 0.0;   plane[1] = 0.0;   plane[2] = -1.0;   plane[3] = value;}static INLINE GLfloatsolve_plane(GLfloat x, GLfloat y, const GLfloat plane[4]){   const GLfloat z = (plane[3] + plane[0] * x + plane[1] * y) / -plane[2];   return z;}#define SOLVE_PLANE(X, Y, PLANE) \   ((PLANE[3] + PLANE[0] * (X) + PLANE[1] * (Y)) / -PLANE[2])/* * Return 1 / solve_plane(). */static INLINE GLfloatsolve_plane_recip(GLfloat x, GLfloat y, const GLfloat plane[4]){   const GLfloat denom = plane[3] + plane[0] * x + plane[1] * y;   if (denom == 0.0)      return 0.0;   else      return -plane[2] / denom;}/* * Solve plane and return clamped GLchan value. */static INLINE GLchansolve_plane_chan(GLfloat x, GLfloat y, const GLfloat plane[4]){   const GLfloat z = (plane[3] + plane[0] * x + plane[1] * y) / -plane[2];#if CHAN_TYPE == GL_FLOAT   return CLAMP(z, 0.0F, CHAN_MAXF);#else   if (z < 0)      return 0;   else if (z > CHAN_MAX)      return CHAN_MAX;   return (GLchan) IROUND_POS(z);#endif}/* * Compute mipmap level of detail. */static INLINE GLfloatcompute_lambda(const GLfloat sPlane[4], const GLfloat tPlane[4],               GLfloat invQ, GLfloat width, GLfloat height){   GLfloat dudx = sPlane[0] / sPlane[2] * invQ * width;   GLfloat dudy = sPlane[1] / sPlane[2] * invQ * width;   GLfloat dvdx = tPlane[0] / tPlane[2] * invQ * height;   GLfloat dvdy = tPlane[1] / tPlane[2] * invQ * height;   GLfloat r1 = dudx * dudx + dudy * dudy;   GLfloat r2 = dvdx * dvdx + dvdy * dvdy;   GLfloat rho2 = r1 + r2;   /* return log base 2 of rho */   if (rho2 == 0.0F)      return 0.0;   else      return (GLfloat) (LOGF(rho2) * 1.442695 * 0.5);/* 1.442695 = 1/log(2) */}/* * Fill in the samples[] array with the (x,y) subpixel positions of * xSamples * ySamples sample positions. * Note that the four corner samples are put into the first four * positions of the array.  This allows us to optimize for the common * case of all samples being inside the polygon. */static voidmake_sample_table(GLint xSamples, GLint ySamples, GLfloat samples[][2]){   const GLfloat dx = 1.0F / (GLfloat) xSamples;   const GLfloat dy = 1.0F / (GLfloat) ySamples;   GLint x, y;   GLint i;   i = 4;   for (x = 0; x < xSamples; x++) {      for (y = 0; y < ySamples; y++) {         GLint j;         if (x == 0 && y == 0) {            /* lower left */            j = 0;         }         else if (x == xSamples - 1 && y == 0) {            /* lower right */            j = 1;         }         else if (x == 0 && y == ySamples - 1) {            /* upper left */            j = 2;         }         else if (x == xSamples - 1 && y == ySamples - 1) {            /* upper right */            j = 3;         }         else {            j = i++;         }         samples[j][0] = x * dx + 0.5F * dx;         samples[j][1] = y * dy + 0.5F * dy;      }   }}/* * Compute how much of the given pixel's area is inside the rectangle * defined by vertices v0, v1, v2, v3. * Vertices MUST be specified in counter-clockwise order. * Return:  coverage in [0, 1]. */static GLfloatcompute_coveragef(const struct LineInfo *info,                  GLint winx, GLint winy){   static GLfloat samples[SUB_PIXEL * SUB_PIXEL][2];   static GLboolean haveSamples = GL_FALSE;   const GLfloat x = (GLfloat) winx;   const GLfloat y = (GLfloat) winy;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -