📄 xstd.asv
字号:
%样本标准化函数
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%输入X为样本矩阵(行向量样本),index为标准化方法
%输出X1为标准化后的样本矩阵
% function [X1]=XStd(X,index)
% [n,m]=size(X);
% switch index
% case '标准差标准化'
% for k=1:n
% X1(k,:)=(X(k,:)-mean(X(k,:)))/std(X(k,:));
% end
% case '模标准化'
% MOData=sqrt(sum(X.^2));
% X1=X./MOData(ones(n,1),:);
% case '中心标准化'
% MEANData=mean(X);
% X1=X-MEANData(ones(n,1),:);
% case '级差标准化'
% MEANData=mean(X);
% TempData1=X-MEANData(ones(n,1),:);
% Temp=minmax(X');
% TempData2=(Temp(:,2)-Temp(:,1))';
% X1=TempData1./TempData2(ones(n,1),:);
% case '级差正规化'
% MINData=min(X);
% TempData1=X-MINData(ones(n,1),:);
% Temp=minmax(X');
% TempData2=(Temp(:,2)-Temp(:,1))';
% X1=TempData1./TempData2(ones(n,1),:);
% end
H1=xlsread('test.xls',1,'A1:J64');
%H1=xlsread('tading.xls',1,'A1:H123');
%
% [b,a]= butter(5,0.5);
% H1=filtfilt(b,a,H);
data=H1;
data=(data-ones(size(data,1),1)*min(data))./(ones(size(data,1),1)*(max(data)-min(data)));
H1=data ;
% k=1;
% for i=0:3
% % H1=data ;
% if i ==1
%
% end
% switch i
% case 0
% A1=H1(17:64,1:8);
% B1=H1(17:64,9);
% case 1
% A1=[H1(1:16,1:8);H1(33:64,1:8)];
% B1=[H1(1:16,9);H1(33:64,9)];
% case 2
% A1=[H1(1:32,1:8);H1(49:64,1:8)];
% B1=[H1(1:32,9);H1(49:64,9)];
% case 3
% A1=H1(1:48,1:8);
% B1=H1(1:48,9);
% end
% % A1=[H1(16*(i-1)+1:16*i,1:8),H1(16*i+1:16(i+1),1:8)]
%
%
% C1=H1(16*i+1:16*(i+1),1:8) ;
% D1=H1(16*i+1:16*(i+1),9) ;
%
% model = svmtrain(B1, A1, '-s 3 -t 2 -g 0.9 -c 50 -p 0.01');
%
% [y, accuracy] = svmpredict(D1, C1, model);
% if k==1
% Y=y;
% k=0;
%
% else
% Y=[Y;y];
% end
%
%
%
% end
% D1=H1(:,9);
%
% T=[1:1:48]';
% V=[1,65,-0.5,1.5];
% D1=[D1(1:16,1);D1(33:64,1)];
% Y=[Y(1:16,1);Y(33:64,1)];
%
%
% X=abs(D1-Y);
% error=sqrt(sum(X.^2)/test_num)
%
% plot(T,D1,'r--','LineWidth',2 );
% axis(V)
% hold on
% plot(T,Y,'b','linewidth',2);
% axis(V)
% A1=H1(1:40,1:8);
% B1=H1(1:40,9);
% C1=H1(41:60,1:8);
% D1=H1(41:60,9);
A1=H1(1:80,1:7);
B1=H1(1:80,8);
C1=H1(81:120,1:7);
D1=H1(81:120,8);
test_num=40;
% E=xlsread('test.xls',1,'J1:J50');
% [n,m]=size(A);
%[p,q]=size(C);
% data=A;
% data=(data-ones(size(data,1),1)*min(data))./(ones(size(data,1),1)*(max(data)-min(data)));
%A1=data ;
% MOData=sqrt(sum(A.^2));
% A1=A./MOData(ones(n,1),:);
%data=B;
% data=(data-ones(size(data,1),1)*min(data))./(ones(size(data,1),1)*(max(data)-min(data)));
%B1=data ;
%data=C;
%data=(data-ones(size(data,1),1)*min(data))./(ones(size(data,1),1)*(max(data)-min(data)));
%C1=data;
% MOData=sqrt(sum(C.^2));
% C1=C./MOData(ones(p,1),:);
%data=D;
% data=(data-ones(size(data,1),1)*min(data))./(ones(size(data,1),1)*(max(data)-min(data)));
%D1=data ;
model = svmtrain(B1, A1, '-s 3 -t 2 -g 0.9 -c 50 -p 0.01');
[y, accuracy] = svmpredict(D1, C1, model);
X=abs(D1-y);
error=sqrt(sum(X.^2)/test_num)
T=[1:1:40]';
V=[1,40,0,0.5];
plot(T,D1,'r--','LineWidth',2 );
axis(V)
hold on
plot(T,y,'b','linewidth',2);
axis(V)
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -