📄 pso.m
字号:
%PSO >> function for the PSO ALGORITHM
%
% USAGES: 1.) [fxmin, xmin, Swarm, history] = PSO(psoOptions);
% 2.) [fxmin, xmin, Swarm, history] = PSO;
% 3.) fxmin = PSO(psoOptions);
% 3.) PSO
% etc.
%
% Arguments : psoOptions--> A Matlab stucture containing all PSO related options. (see also: get_psoOptions)
% Return Values : [fxmin, xmin, Swarm, history]
% | | | |_The history of the algorithm. Depicts how the function value of GBest changes over the run.
% | | |_The final Swarm. (A matrix containing co-ordinates of all particles)
% | |_The co-ordinates of Best (ever) particle found during the PSO's run.
% |__The objective value of Best (^xmin) particle.
%
% History : Author : JAG (Jagatpreet Singh)
% Created on : 05022003 (Friday. 2nd May, 2003)
% Comments : The basic PSO algorithm.
% Modified on : 0710003 (Thursday. 10th July, 2003)
% Comments : It uses psoOptions structure now. More organized.
%
% see also: get_psoOptions
function [histPlot]= PSO(psoOptions)
%Globals
warning off
global psoFlags;
global psoVars;
global psoSParameters;
global notifications;
psoOptions = get_psoOptions;
idxPlot=1;
histPlot=zeros(1,2001);
upbnd = 600; % Upper bound for init. of the swarm
lwbnd = 300; % Lower bound for init. of the swarm
GM = 0; % Global minimum (used in the stopping criterion)
ErrGoal = 1e-10; % Desired accuracy
EqualCounter = 0;
% Initializing variables
success = 0; % Success Flag
iter = 0; % Iterations' counter
fevals = 0; % Function evaluations' counter
% Using params---
% Determine the value of weight change
w_start = psoOptions.SParams.w_start; %Initial inertia weight's value
w_end = psoOptions.SParams.w_end; %Final inertia weight
w_varyfor = floor(psoOptions.SParams.w_varyfor*psoOptions.Vars.Iterations); %Weight change step. Defines total number of iterations for which weight is changed.
w_now = w_start;
inertdec = (w_start-w_end)/w_varyfor; %Inertia weight's change per iteration
% Initialize Swarm and Velocity
SwarmSize = psoOptions.Vars.SwarmSize;
Swarm = rand(SwarmSize, psoOptions.Vars.Dim)*(psoOptions.Obj.ub-psoOptions.Obj.lb) + psoOptions.Obj.lb;
Swarm(:,1) = rand(SwarmSize,1)*(100-0)+0;%[0 4000]
Swarm(:,2) = rand(SwarmSize,1)*(2-0.0001)+0;%[0 4000]
Swarm(:,3) = rand(SwarmSize,1)*(100-0)+0;%[0 4000]
Swarm(:,4) = rand(SwarmSize,1)*(2-0.0001)+0;%[0 4000]
VStep = rand(SwarmSize, psoOptions.Vars.Dim);
f2eval = psoOptions.Obj.f2eval; %The objective function to optimize.
%Find initial function values.
fSwarm = feval(f2eval, Swarm);
fevals = fevals + SwarmSize;
% Initializing the Best positions matrix and
% the corresponding function values
PBest = Swarm;
fPBest = fSwarm;
%pause
PBestTotal=PBest-PBest;
% Finding best particle in initial population
[fGBest, g] = min(fSwarm);
lastbpf = fGBest;
Best = Swarm(g,:); %Used to keep track of the Best particle ever
fBest = fGBest;
history = [0, fGBest];
if psoOptions.Disp.Interval & (rem(iter, psoOptions.Disp.Interval) == 0)
disp(sprintf('Iterations\t\tfGBest\t\t\tfevals'));
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% THE PSO LOOP %%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
while( (success == 0) & (iter <= psoOptions.Vars.Iterations) )
iter = iter+1;
% Update the value of the inertia weight w
w_now = w_now - inertdec; %Change inertia weight
%%%%%%%%%%%%%%%%%
% The PLAIN PSO %
% Set GBest
A = repmat(Swarm(g,:), SwarmSize, 1); %A = GBest. repmat(X, m, n) repeats the matrix X in m rows by n columns.
B = A; %B wil be nBest (best neighbor) matrix
% use neighborhood model
% circular neighborhood is used
if psoOptions.Flags.Neighbor
for i = 1:SwarmSize
[fNBest(i), nb(i)] = min(fSwarm( find(nhood(i)) ));
B(i, :) = Swarm(nb(i), :);
end
end
% Generate Random Numbers
R1 = rand(SwarmSize, psoOptions.Vars.Dim);
R2 = rand(SwarmSize, psoOptions.Vars.Dim);
% Calculate Velocity
if ~psoOptions.Flags.Neighbor %Normal
VStep = w_now*VStep + psoOptions.SParams.c1*R1.*(PBest-Swarm) + psoOptions.SParams.c2*R2.*(A-Swarm);
end
% Apply Vmax Operator for v > Vmax
changeRows = VStep > psoOptions.SParams.Vmax;
VStep(find(changeRows)) = psoOptions.SParams.Vmax;
% Apply Vmax Operator for v < -Vmax
changeRows = VStep < -psoOptions.SParams.Vmax;
VStep(find(changeRows)) = -psoOptions.SParams.Vmax;
%对粒子进行模式移动
if EqualCounter ==100
EqualCounter = 0;
for iiii= 1:3
% Swarm= AcrossSwarm(Swarm,psoOptions);
% Swarm = PatternMove(Swarm,2,psoOptions);
end
else
Swarm = Swarm + psoOptions.SParams.Chi * VStep;
end
%//对粒子进行模式移动
changeRows = Swarm > psoOptions.Obj.ub;
Swarm(find(changeRows)) = psoOptions.Obj.ub;
changeRows = Swarm < psoOptions.Obj.lb;
Swarm(find(changeRows)) = psoOptions.Obj.lb;
fSwarm = feval(f2eval, Swarm);
fevals = fevals + SwarmSize;
% Updating the best position for each particle
changeRows = fSwarm < fPBest;
fPBest(find(changeRows)) = fSwarm(find(changeRows));
PBest(find(changeRows), :) = Swarm(find(changeRows), :);
lastbpart = PBest(g, :);
% Updating index g
[fGBest, g] = min(fPBest);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%保存历史曲线用于输出
histPlot(idxPlot) = fGBest;
idxPlot=idxPlot+1;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%如果best相等,即可能陷入了局部最优解时,
if abs(fGBest - lastbpf) <1E-11
EqualCounter = EqualCounter+1;
else
EqualCounter=0;
end
%//如果best相等,即可能陷入了局部最优解时
%Update Best. Only if fitness has improved.
if fGBest < lastbpf
[fBest, b] = min(fPBest);
Best = PBest(b,:);
end
%%OUTPUT%%
if psoOptions.Save.Interval & (rem(iter, psoOptions.Save.Interval) == 0)
history((size(history,1)+1), :) = [iter, fBest];
end
if psoOptions.Disp.Interval & (rem(iter, psoOptions.Disp.Interval) == 0)
disp(sprintf('%4d\t\t\t%.5g\t\t\t%5d', iter, fGBest, fevals));
end
% hold off
% t=iter;
% t=0:100:1000;
% plot(t,fGbest);
% hold on
if psoOptions.Flags.ShowViz
[fworst, worst] = max(fGBest);
DrawSwarm(Swarm, SwarmSize, iter, psoOptions.Vars.Dim, Swarm(g,:), vizAxes);
end
%%TERMINATION%%
if abs(fGBest-psoOptions.Obj.GM) <= psoOptions.Vars.ErrGoal %GBest
success = 1;
elseif abs(fBest-psoOptions.Obj.GM)<=psoOptions.Vars.ErrGoal %Best
success = 1
else
lastbpf = fGBest; %To be used to find Best
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% END OF PSO LOOP %%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
fPBest;
[fxmin, b] = min(fPBest);
b;
PBest;
xmin = PBest(b, :);
xmin
fGBest
iter
% save histPlot
% plot(1:length(histPlot),histPlot)
% axis([0 length(histPlot) 0 2])
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -