⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 yang.asv

📁 粒子群算法
💻 ASV
字号:
%function [ output_args ] = Untitled1( input_args )%UNTITLED1 Summary of this function goes here%  Detailed explanation goes here%H1=xlsread('tading.xls',1,'A1:H123');H1=xlsread('test.xls',1,'A1:J64');%  [b,a]= butter(5,0.5);%  H1=filtfilt(b,a,H);  data=H1;  data=(data-ones(size(data,1),1)*min(data))./(ones(size(data,1),1)*(max(data)-min(data))); H1=data;   A1=H1(1:40,1:8); B1=H1(1:40,9); C1=H1(41:60,1:8); D1=H1(41:60,9);%  A1=H1(1:80,1:7);%  B1=H1(1:80,8);%  C1=H1(81:120,1:7);%  D1=H1(81:120,8); %       data=A;%       data1=A;%       data=(data-ones(size(data,1),1)*min(data))./(ones(size(data,1),1)*(max(data)-min(data)));%       A1=data ;% %       %  MOData=sqrt(sum(A.^2));%       % A1=A./MOData(ones(n,1),:);%       data2=B;%       data=B;%       data=(data-ones(size(data,1),1)*min(data))./(ones(size(data,1),1)*(max(data)-min(data)));%       B1=data ;% %       data=C;%       data=(data-ones(size(data,1),1)*min(data1))./(ones(size(data,1),1)*(max(data1)-min(data1)));%       C1=data;%       %   MOData=sqrt(sum(C.^2));%       %  C1=C./MOData(ones(p,1),:);% %       data=D;%       data=(data-ones(size(data,1),1)*min(data2))./(ones(size(data,1),1)*(max(data2)-min(data2)));%       D1=data ;         % max_ev =14;  %选择主元个数 tading       max_ev =8;  %选择主元个数      rbf_var = 1.4;  %髙斯函数的参数      cov_size=40;     %样本个数      for i=1:cov_size,    %得到K          for j=i:cov_size,              K(i,j) = exp(-norm(A1(i,:)-A1(j,:))^2/rbf_var);              K(j,i) = K(i,j);          end      end      unit = ones(cov_size, cov_size)/cov_size;      % centering in feature space!      K_n = K - unit*K - K*unit + unit*K*unit;      [evecs,evals] = eig(K_n);     % A2=evecs;      evals = real(diag(evals));      for i=1:cov_size,          evecs(:,i) = evecs(:,i)/(sqrt(evals(i)));         end%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%      test_num=40;      unit_test = ones(test_num,cov_size)/cov_size;      K_test = zeros(test_num,cov_size);      for i=1:test_num,          for j=1:cov_size,              K_test(i,j) = exp(-norm(A1(i,:)-A1(j,:))^2/rbf_var);          end      end      K_test_n = K_test - unit_test*K - K_test*unit + unit_test*K*unit;      test_features = zeros(test_num, max_ev);      test_features = K_test_n * evecs(:,1:max_ev);      A2=test_features;%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%      test_num=20;      unit_test = ones(test_num,cov_size)/cov_size;      K_test = zeros(test_num,cov_size);      for i=1:test_num,          for j=1:cov_size,              K_test(i,j) = exp(-norm(C1(i,:)-A1(j,:))^2/rbf_var);          end      end      K_test_n = K_test - unit_test*K - K_test*unit + unit_test*K*unit;      test_features = zeros(test_num, max_ev);      test_features = K_test_n * evecs(:,1:max_ev);      C2=test_features;      model = svmtrain(B1, A2, '-s 3 -t 2 -g 0.09 -c 30 -p 0.01');      [y, accuracy] = svmpredict(D1, C2, model);          X=abs(D1-y); error=sqrt(sum(X.^2)/test_num)% Y=ones(size(X,1),1)*mean(X); %error=sqrt(sum((X-Y).^2)/test_num)  T=[1:1:20]'; V=[1,20,-0.5,1.5]; plot(T,D1,'r--','LineWidth',2 ); axis(V); hold on plot(T,y,'b','linewidth',2); axis(V);      

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -