⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 tst_sdram.v

📁 memory control source code
💻 V
📖 第 1 页 / 共 4 页
字号:
/////////////////////////////////////////////////////////////////////
////                                                             ////
////  OpenCores Memory Controller Testbench                      ////
////  SDRAM memory devices tests                                 ////
////  This file is being included by the main testbench          ////
////                                                             ////
////  Author: Richard Herveille                                  ////
////          richard@asics.ws                                   ////
////                                                             ////
////                                                             ////
////  Downloaded from: http://www.opencores.org/cores/mem_ctrl/  ////
////                                                             ////
/////////////////////////////////////////////////////////////////////
////                                                             ////
//// Copyright (C) 2001, 2002 Richard Herveille                  ////
////                          richard@asics.ws                   ////
////                                                             ////
//// This source file may be used and distributed without        ////
//// restriction provided that this copyright statement is not   ////
//// removed from the file and that any derivative work contains ////
//// the original copyright notice and the associated disclaimer.////
////                                                             ////
////     THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY     ////
//// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED   ////
//// TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS   ////
//// FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL THE AUTHOR      ////
//// OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,         ////
//// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES    ////
//// (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE   ////
//// GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR        ////
//// BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF  ////
//// LIABILITY, WHETHER IN  CONTRACT, STRICT LIABILITY, OR TORT  ////
//// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT  ////
//// OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE         ////
//// POSSIBILITY OF SUCH DAMAGE.                                 ////
////                                                             ////
/////////////////////////////////////////////////////////////////////

//  CVS Log
//
//  $Id: tst_sdram.v,v 1.1 2002/03/06 15:10:34 rherveille Exp $
//
//  $Date: 2002/03/06 15:10:34 $
//  $Revision: 1.1 $
//  $Author: rherveille $
//  $Locker:  $
//  $State: Exp $
//
// Change History:
//               $Log: tst_sdram.v,v $
//               Revision 1.1  2002/03/06 15:10:34  rherveille
//               Initial release
//
//


	////////////////////////////////
	// SDRAM memory fill test
	//

	// Test memory contents overwrite
	// 1) Fill entire SDRAM memory
	// 2) Verify memory contents
	// 3) Test for BAS setting
	//
	// THIS IS A FULL MEMORY TEST
	// MAY RUN FOR A FEW DAYS
	task tst_sdram_memfill;
		parameter [31:0] SDRAM_TST_STARTA = `SDRAM1_LOC; // start at address 0
		parameter [ 7:0] SDRAM1_SEL = SDRAM_TST_STARTA[28:21];
		parameter SDRAM_TST_RUN = ( 1<<(`SDRAM_COLA_HI+1)<<(`SDRAM_ROWA_HI+1) ) *4;

		integer n;
		reg [31:0] my_adr, dest_adr;
		reg [31:0] my_dat;

		// config register mode bits
		reg [1:0] kro, bas; // a single register doesn't work with the for-loops

		// SDRAM Mode Register bits
		reg [1:0] wbl; // a single register doesn't work with the for-loops
		reg [2:0] cl, bl;

		reg [31:0] csc_data, tms_data;

		integer cyc_delay, stb_delay;
		integer bank_cnt, col_cnt;

		begin

			$display("\n\n --- SDRAM MEMORY FILL TEST ---\n\n");

			// clear Wishbone-Master-model current-error-counter 
			wbm.set_cur_err_cnt(0);

			// choose some settings, other settings will be tested
			// in next tests
			kro = 0;
			bas = 0;

			wbl = 0; // programmed burst length
			cl  = 2; // cas latency = 2
			bl  = 2; // burst length = 4

			// variables for CSC register
			for (bas = 0; bas <= 1; bas = bas +1)
					begin
						csc_data = {
							8'h00,      // reserved
							SDRAM1_SEL, // SEL
							4'h0,       // reserved
							1'b0,       // parity disabled
							kro[0],     // KRO
							bas[0],     // BAS
							1'b0,       // WP
							2'b10,      // MS == 256MB
							2'b01,      // BW == 16bit bus per device
							3'b000,     // MEM_TYPE == SDRAM
							1'b1        // EN == chip select enabled
						};
						
						tms_data = {
							4'h0,   // reserved
							4'h8,   // Trfc == 7 (+1)
							4'h4,   // Trp == 2 (+1) ?????
							3'h3,   // Trcd == 2 (+1)
							2'b11,  // Twr == 2 (+1)
							5'h0,   // reserved
							wbl[0], // write burst length
							2'b00,  // OM  == normal operation
							cl,     // cas latency
							1'b0,   // BT == sequential burst type
							bl
						};

						// program chip select registers
						$display("\nProgramming SDRAM chip select register. KRO = %d, BAS = %d", kro, bas);
						wbm.wb_write(0, 0, 32'h6000_0028, csc_data); // program cs3 config register (CSC3)

						$display("Programming SDRAM timing register. WBL = %d, CL = %d, BL = %d\n", wbl, cl, bl);
						wbm.wb_write(0, 0, 32'h6000_002c, tms_data); // program cs3 timing register (TMS3)

						// check written data
						wbm.wb_cmp(0, 0, 32'h6000_0028, csc_data);
						wbm.wb_cmp(0, 0, 32'h6000_002c, tms_data);

						// only select cyc_delay = 0
						// only select stb_delay = 0
						// --> fastest test_run.
						// other possibilities will be tested by next tests
						cyc_delay = 0;
						stb_delay = 0;

							begin
		
								// fill sdrams
								$display("Filling SDRAM memory... (This takes a while)");
								my_dat = 0;
								bank_cnt = 0;
								for (n=0; n < SDRAM_TST_RUN; n=n+1)
									begin
										my_adr   = n<<2;
										dest_adr = SDRAM_TST_RUN -1 - my_adr; // fill backward
										my_dat   = my_adr;

										if (n % (1<<(`SDRAM_COLA_HI+1)<<(`SDRAM_ROWA_HI+1)) == 0)
											begin
												col_cnt = 0;
												bank_cnt = bank_cnt +1;
											end

										if (n % (1<<(`SDRAM_COLA_HI+1)) == 0)
											begin
												$display("Filling bank %d, column %d", bank_cnt, col_cnt);
												col_cnt = col_cnt +1;
											end

										wbm.wb_write(cyc_delay, stb_delay, dest_adr, my_dat);
									end

								// read sdrams
								$display("Verifying SDRAM memory contents...");
								my_dat = 0;
								bank_cnt = 0;
								for (n=0; n < SDRAM_TST_RUN; n=n+1)
									begin
										my_adr   = n<<2;
										dest_adr = SDRAM_TST_STARTA + my_adr;
										my_dat   = my_adr;

										if (n % (1<<(`SDRAM_COLA_HI+1)) == 0)
											begin
												$display("Verifying bank %d", bank_cnt);
												bank_cnt = bank_cnt +1;
											end

										wbm.wb_cmp(cyc_delay, stb_delay, dest_adr, my_dat);
									end
							end

							repeat(10) @(posedge wb_clk); //wait a while
					end


			// show Wishbone-Master-model current-error-counter 
			wbm.show_cur_err_cnt;

		end
	endtask // test_sdram_memfill


	////////////////////////////////
	// SDRAM parity test
	//

	// 1) This is practically the 'SDRAM sequential access test'
	// 2) First check parity operation
	// 3) Then introduce some parity errors
	task tst_sdram_parity;
	
		parameter MAX_CYC_DELAY = 5;
		parameter MAX_STB_DELAY = 5;

		parameter [31:0] SDRAM_TST_STARTA = `SDRAM1_LOC + (1<<`SDRAM_COLA_HI) + (1<<`SDRAM_COLA_HI>>1); // start at 75% of page
		parameter [ 7:0] SDRAM1_SEL = SDRAM_TST_STARTA[28:21];
		parameter SDRAM_TST_RUN = 16; // a few runs

		integer n;
		reg [31:0] my_adr, dest_adr;
		reg [31:0] my_dat;

		// config register mode bits
		reg [1:0] kro, bas; // a single register doesn't work with the for-loops

		// SDRAM Mode Register bits
		reg [1:0] wbl; // a single register doesn't work with the for-loops
		reg [2:0] cl, bl;

		reg [31:0] csc_data, tms_data;

		integer cyc_delay, stb_delay;

		integer mod_par;

		begin

			$display("\n\n --- SDRAM PARITY TEST ---\n\n");

			// clear Wishbone-Master-model current-error-counter 
			wbm.set_cur_err_cnt(0);

			kro = 0;
			bas = 0;

			wbl = 0; // programmed burst length
			cl  = 2; // cas latency = 2
			bl  = 1; // burst length = 8

			// simply set the parity bits to zero, when introducing parity errors
			set_par = 4'b0;

			// use second SDRAMS set as parity sdrams
			sel_pbus = 1;

			for(mod_par = 0; mod_par <= 1; mod_par = mod_par +1)
			begin

				// switch between parity and parity errors
				sel_par  = mod_par;

				if(sel_par)
					$display("\n-- Checking parity generation --");
				else
					$display("\n-- Introducing parity errors --");

				// variables for TMS register
				
				// skip these settings, since they are not relevant to parity
//				for (cl  = 2; cl  <= 3; cl  = cl  +1)
//				for (wbl = 0; wbl <= 1; wbl = wbl +1)
//				for (bl  = 0; bl  <= 3; bl  = bl  +1)

				// variables for CSC register
//				for (kro = 0; kro <= 1; kro = kro +1)
//				for (bas = 0; bas <= 1; bas = bas +1)

					begin
						csc_data = {
							8'h00,       // reserved
							SDRAM1_SEL,  // SEL
							4'h0,        // reserved
							1'b1,        // parity enabled
							kro[0],      // KRO
							bas[0],      // BAS
							1'b0,        // WP
							2'b10,       // MS == 256MB
							2'b01,       // BW == 16bit bus per device
							3'b000,      // MEM_TYPE == SDRAM
							1'b1         // EN == chip select enabled
						};
						
						tms_data = {
							4'h0,   // reserved
							4'h8,   // Trfc == 7 (+1)
							4'h4,   // Trp == 2 (+1) ?????
							3'h3,   // Trcd == 2 (+1)
							2'b11,  // Twr == 2 (+1)
							5'h0,   // reserved
							wbl[0], // write burst length
							2'b00,  // OM  == normal operation
							cl,     // cas latency
							1'b0,   // BT == sequential burst type
							bl
						};

						// program chip select registers
						$display("\nProgramming SDRAM chip select register. KRO = %d, BAS = %d", kro, bas);
						wbm.wb_write(0, 0, 32'h6000_0028, csc_data); // program cs3 config register (CSC3)

						$display("Programming SDRAM timing register. WBL = %d, CL = %d, BL = %d\n", wbl, cl, bl);
						wbm.wb_write(0, 0, 32'h6000_002c, tms_data); // program cs3 timing register (TMS3)

						// check written data
						wbm.wb_cmp(0, 0, 32'h6000_0028, csc_data);
						wbm.wb_cmp(0, 0, 32'h6000_002c, tms_data);

						cyc_delay = 0;
						stb_delay = 0;

						// skip cyc_delay and stb_delay.
						// They are not relevant to parity generation
//						for (cyc_delay = 0; cyc_delay <= MAX_CYC_DELAY; cyc_delay = cyc_delay +1)
//						for (stb_delay = 0; stb_delay <= MAX_STB_DELAY; stb_delay = stb_delay +1)
							begin
		
								$display("\nSDRAM parity test. CYC-delay = %d, STB-delay = ", cyc_delay, stb_delay);

								// fill sdrams
								$display("Filling SDRAM memory...");
								my_dat = 0;
								for (n=0; n < SDRAM_TST_RUN; n=n+1)
									begin
										my_adr   = n<<2;
										dest_adr = SDRAM_TST_STARTA + my_adr;
										my_dat   = my_adr + my_dat + kro + bas + wbl + cl + bl + cyc_delay + stb_delay;

										wbm.wb_write(cyc_delay, stb_delay, dest_adr, my_dat);
									end

								// read sdrams
								$display("Verifying SDRAM memory contents...");
								my_dat = 0;
								for (n=0; n < SDRAM_TST_RUN; n=n+1)
									begin
										my_adr   = n<<2;
										dest_adr = SDRAM_TST_STARTA + my_adr;
										my_dat   = my_adr + my_dat + kro + bas + wbl + cl + bl + cyc_delay + stb_delay;

										wbm.wb_cmp(cyc_delay, stb_delay, dest_adr, my_dat);
									end
							end

							repeat(10) @(posedge wb_clk); //wait a while
					end

			end

			// show Wishbone-Master-model current-error-counter 
			wbm.show_cur_err_cnt;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -