📄 createnet_alpha.m
字号:
function net = createnet_alpha(n_in, n_hid, n_out, nonlin, ... w1std, b1std, w2std, b2std, malpha, valpha)% CREATENET_ALPHA Create an MLP network with one hidden layer and alphas% for all variables%% Usage:% net = createnet(n_in, n_hid, n_out, nonlin,% w1std, b1std, w2std, b2std, malpha, valpha)%% where idim, hdim and odim are numbers of input, hidden% and output neurons, respectively. Nonlin specifies the% name of activation function for the hidden layer (default: tanh).% The network is initialized randomly and -std parameters% specify standard deviations for all values (defaults: 2,4,1,1).% Malpha and valpha specify initial values for mean and variance% alphas, respectively.% Copyright (C) 2002 Harri Valpola and Antti Honkela.%% This package comes with ABSOLUTELY NO WARRANTY; for details% see License.txt in the program package. This is free software,% and you are welcome to redistribute it under certain conditions;% see License.txt for details.if nargin < 5 w1std = 2; b1std = 4; w2std = 1; b2std = 1;endif nargin < 9 malpha = .1; valpha = .1;endvarcoef = .001;net.w1 = probdist_alpha(w1std * randn(n_hid, n_in), ... varcoef * ones(n_hid, n_in), ... malpha * ones(n_hid, n_in), ... valpha * ones(n_hid, n_in));net.b1 = probdist_alpha(b1std * randn(n_hid, 1), ... varcoef * ones(n_hid, 1), ... malpha * ones(n_hid, 1), ... valpha * ones(n_hid, 1));net.w2 = probdist_alpha(w2std * randn(n_out, n_hid), ... varcoef * ones(n_out, n_hid), ... malpha * ones(n_out, n_hid), ... valpha * ones(n_out, n_hid));net.b2 = probdist_alpha(b2std * randn(n_out, 1), ... varcoef * ones(n_out, 1), ... malpha * ones(n_out, 1), ... valpha * ones(n_out, 1));if nargin > 3 net.nonlin = nonlin;else net.nonlin = 'tanh';end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -