⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 specfun.cc

📁 The library is a C++/Python implementation of the variational building block framework introduced in
💻 CC
📖 第 1 页 / 共 2 页
字号:
{	double t,y,z,nadj,p,p1,p2,p3,q,r,w;	int i,hx,lx,ix;	double foo;	double *signgamp = &foo;	EXTRACT_WORDS(hx,lx,x);    /* purge off +-inf, NaN, +-0, and negative arguments */	*signgamp = 1;	ix = hx&0x7fffffff;	if(ix>=0x7ff00000) return x*x;	if((ix|lx)==0) return one/zero;	if(ix<0x3b900000) {	/* |x|<2**-70, return -log(|x|) */	    if(hx<0) {	        *signgamp = -1;	        return -__ieee754_log(-x);	    } else return -__ieee754_log(x);	}	if(hx<0) {	    if(ix>=0x43300000) 	/* |x|>=2**52, must be -integer */		return one/zero;	    t = sin_pi(x);	    if(t==zero) return one/zero; /* -integer */	    nadj = __ieee754_log(pi/fabs(t*x));	    if(t<zero) *signgamp = -1;	    x = -x;	}    /* purge off 1 and 2 */	if((((ix-0x3ff00000)|lx)==0)||(((ix-0x40000000)|lx)==0)) r = 0;    /* for x < 2.0 */	else if(ix<0x40000000) {	    if(ix<=0x3feccccc) { 	/* lgamma(x) = lgamma(x+1)-log(x) */		r = -__ieee754_log(x);		if(ix>=0x3FE76944) {y = one-x; i= 0;}		else if(ix>=0x3FCDA661) {y= x-(tc-one); i=1;}	  	else {y = x; i=2;}	    } else {	  	r = zero;	        if(ix>=0x3FFBB4C3) {y=2.0-x;i=0;} /* [1.7316,2] */	        else if(ix>=0x3FF3B4C4) {y=x-tc;i=1;} /* [1.23,1.73] */		else {y=x-one;i=2;}	    }	    switch(i) {	      case 0:		z = y*y;		p1 = a0+z*(a2+z*(a4+z*(a6+z*(a8+z*a10))));		p2 = z*(a1+z*(a3+z*(a5+z*(a7+z*(a9+z*a11)))));		p  = y*p1+p2;		r  += (p-0.5*y); break;	      case 1:		z = y*y;		w = z*y;		p1 = t0+w*(t3+w*(t6+w*(t9 +w*t12)));	/* parallel comp */		p2 = t1+w*(t4+w*(t7+w*(t10+w*t13)));		p3 = t2+w*(t5+w*(t8+w*(t11+w*t14)));		p  = z*p1-(tt-w*(p2+y*p3));		r += (tf + p); break;	      case 2:			p1 = y*(u0+y*(u1+y*(u2+y*(u3+y*(u4+y*u5)))));		p2 = one+y*(v1+y*(v2+y*(v3+y*(v4+y*v5))));		r += (-0.5*y + p1/p2);	    }	}	else if(ix<0x40200000) { 			/* x < 8.0 */	    i = (int)x;	    t = zero;	    y = x-(double)i;	    p = y*(s0+y*(s1+y*(s2+y*(s3+y*(s4+y*(s5+y*s6))))));	    q = one+y*(r1+y*(r2+y*(r3+y*(r4+y*(r5+y*r6)))));	    r = half*y+p/q;	    z = one;	/* lgamma(1+s) = log(s) + lgamma(s) */	    switch(i) {	    case 7: z *= (y+6.0);	/* FALLTHRU */	    case 6: z *= (y+5.0);	/* FALLTHRU */	    case 5: z *= (y+4.0);	/* FALLTHRU */	    case 4: z *= (y+3.0);	/* FALLTHRU */	    case 3: z *= (y+2.0);	/* FALLTHRU */		    r += __ieee754_log(z); break;	    }    /* 8.0 <= x < 2**58 */	} else if (ix < 0x43900000) {	    t = __ieee754_log(x);	    z = one/x;	    y = z*z;	    w = w0+z*(w1+y*(w2+y*(w3+y*(w4+y*(w5+y*w6)))));	    r = (x-half)*(t-one)+w;	} else     /* 2**58 <= x <= inf */	    r =  x*(__ieee754_log(x)-one);	if(hx<0) r = nadj - r;	return r;}/* @(#)s_erf.c 5.1 93/09/24 *//* * ==================================================== * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. * * Developed at SunPro, a Sun Microsystems, Inc. business. * Permission to use, copy, modify, and distribute this * software is freely granted, provided that this notice  * is preserved. * ==================================================== *///static char rcsid[] = "NetBSD: s_erf.c,v 1.8 1995/05/10 20:47:05 jtc Exp";/* double erf(double x) * double erfc(double x) *			     x *		      2      |\ *     erf(x)  =  ---------  | exp(-t*t)dt *	 	   sqrt(pi) \|  *			     0 * *     erfc(x) =  1-erf(x) *  Note that  *		erf(-x) = -erf(x) *		erfc(-x) = 2 - erfc(x) * * Method: *	1. For |x| in [0, 0.84375] *	    erf(x)  = x + x*R(x^2) *          erfc(x) = 1 - erf(x)           if x in [-.84375,0.25] *                  = 0.5 + ((0.5-x)-x*R)  if x in [0.25,0.84375] *	   where R = P/Q where P is an odd poly of degree 8 and *	   Q is an odd poly of degree 10. *						 -57.90 *			| R - (erf(x)-x)/x | <= 2 *	 * *	   Remark. The formula is derived by noting *          erf(x) = (2/sqrt(pi))*(x - x^3/3 + x^5/10 - x^7/42 + ....) *	   and that *          2/sqrt(pi) = 1.128379167095512573896158903121545171688 *	   is close to one. The interval is chosen because the fix *	   point of erf(x) is near 0.6174 (i.e., erf(x)=x when x is *	   near 0.6174), and by some experiment, 0.84375 is chosen to * 	   guarantee the error is less than one ulp for erf. * *      2. For |x| in [0.84375,1.25], let s = |x| - 1, and *         c = 0.84506291151 rounded to single (24 bits) *         	erf(x)  = sign(x) * (c  + P1(s)/Q1(s)) *         	erfc(x) = (1-c)  - P1(s)/Q1(s) if x > 0 *			  1+(c+P1(s)/Q1(s))    if x < 0 *         	|P1/Q1 - (erf(|x|)-c)| <= 2**-59.06 *	   Remark: here we use the taylor series expansion at x=1. *		erf(1+s) = erf(1) + s*Poly(s) *			 = 0.845.. + P1(s)/Q1(s) *	   That is, we use rational approximation to approximate *			erf(1+s) - (c = (single)0.84506291151) *	   Note that |P1/Q1|< 0.078 for x in [0.84375,1.25] *	   where  *		P1(s) = degree 6 poly in s *		Q1(s) = degree 6 poly in s * *      3. For x in [1.25,1/0.35(~2.857143)],  *         	erfc(x) = (1/x)*exp(-x*x-0.5625+R1/S1) *         	erf(x)  = 1 - erfc(x) *	   where  *		R1(z) = degree 7 poly in z, (z=1/x^2) *		S1(z) = degree 8 poly in z * *      4. For x in [1/0.35,28] *         	erfc(x) = (1/x)*exp(-x*x-0.5625+R2/S2) if x > 0 *			= 2.0 - (1/x)*exp(-x*x-0.5625+R2/S2) if -6<x<0 *			= 2.0 - tiny		(if x <= -6) *         	erf(x)  = sign(x)*(1.0 - erfc(x)) if x < 6, else *         	erf(x)  = sign(x)*(1.0 - tiny) *	   where *		R2(z) = degree 6 poly in z, (z=1/x^2) *		S2(z) = degree 7 poly in z * *      Note1: *	   To compute exp(-x*x-0.5625+R/S), let s be a single *	   precision number and s := x; then *		-x*x = -s*s + (s-x)*(s+x) *	        exp(-x*x-0.5626+R/S) =  *			exp(-s*s-0.5625)*exp((s-x)*(s+x)+R/S); *      Note2: *	   Here 4 and 5 make use of the asymptotic series *			  exp(-x*x) *		erfc(x) ~ ---------- * ( 1 + Poly(1/x^2) ) *			  x*sqrt(pi) *	   We use rational approximation to approximate *      	g(s)=f(1/x^2) = log(erfc(x)*x) - x*x + 0.5625 *	   Here is the error bound for R1/S1 and R2/S2 *      	|R1/S1 - f(x)|  < 2**(-62.57) *      	|R2/S2 - f(x)|  < 2**(-61.52) * *      5. For inf > x >= 28 *         	erf(x)  = sign(x) *(1 - tiny)  (raise inexact) *         	erfc(x) = tiny*tiny (raise underflow) if x > 0 *			= 2 - tiny if x<0 * *      7. Special case: *         	erf(0)  = 0, erf(inf)  = 1, erf(-inf) = -1, *         	erfc(0) = 1, erfc(inf) = 0, erfc(-inf) = 2,  *	   	erfc/erf(NaN) is NaN */static const doubletiny	    = 1e-300,two =  2.00000000000000000000e+00, /* 0x40000000, 0x00000000 */	/* c = (float)0.84506291151 */erx =  8.45062911510467529297e-01, /* 0x3FEB0AC1, 0x60000000 *//* * Coefficients for approximation to  erf on [0,0.84375] */efx =  1.28379167095512586316e-01, /* 0x3FC06EBA, 0x8214DB69 */efx8=  1.02703333676410069053e+00, /* 0x3FF06EBA, 0x8214DB69 */pp0  =  1.28379167095512558561e-01, /* 0x3FC06EBA, 0x8214DB68 */pp1  = -3.25042107247001499370e-01, /* 0xBFD4CD7D, 0x691CB913 */pp2  = -2.84817495755985104766e-02, /* 0xBF9D2A51, 0xDBD7194F */pp3  = -5.77027029648944159157e-03, /* 0xBF77A291, 0x236668E4 */pp4  = -2.37630166566501626084e-05, /* 0xBEF8EAD6, 0x120016AC */qq1  =  3.97917223959155352819e-01, /* 0x3FD97779, 0xCDDADC09 */qq2  =  6.50222499887672944485e-02, /* 0x3FB0A54C, 0x5536CEBA */qq3  =  5.08130628187576562776e-03, /* 0x3F74D022, 0xC4D36B0F */qq4  =  1.32494738004321644526e-04, /* 0x3F215DC9, 0x221C1A10 */qq5  = -3.96022827877536812320e-06, /* 0xBED09C43, 0x42A26120 *//* * Coefficients for approximation to  erf  in [0.84375,1.25]  */pa0  = -2.36211856075265944077e-03, /* 0xBF6359B8, 0xBEF77538 */pa1  =  4.14856118683748331666e-01, /* 0x3FDA8D00, 0xAD92B34D */pa2  = -3.72207876035701323847e-01, /* 0xBFD7D240, 0xFBB8C3F1 */pa3  =  3.18346619901161753674e-01, /* 0x3FD45FCA, 0x805120E4 */pa4  = -1.10894694282396677476e-01, /* 0xBFBC6398, 0x3D3E28EC */pa5  =  3.54783043256182359371e-02, /* 0x3FA22A36, 0x599795EB */pa6  = -2.16637559486879084300e-03, /* 0xBF61BF38, 0x0A96073F */qa1  =  1.06420880400844228286e-01, /* 0x3FBB3E66, 0x18EEE323 */qa2  =  5.40397917702171048937e-01, /* 0x3FE14AF0, 0x92EB6F33 */qa3  =  7.18286544141962662868e-02, /* 0x3FB2635C, 0xD99FE9A7 */qa4  =  1.26171219808761642112e-01, /* 0x3FC02660, 0xE763351F */qa5  =  1.36370839120290507362e-02, /* 0x3F8BEDC2, 0x6B51DD1C */qa6  =  1.19844998467991074170e-02, /* 0x3F888B54, 0x5735151D *//* * Coefficients for approximation to  erfc in [1.25,1/0.35] */ra0  = -9.86494403484714822705e-03, /* 0xBF843412, 0x600D6435 */ra1  = -6.93858572707181764372e-01, /* 0xBFE63416, 0xE4BA7360 */ra2  = -1.05586262253232909814e+01, /* 0xC0251E04, 0x41B0E726 */ra3  = -6.23753324503260060396e+01, /* 0xC04F300A, 0xE4CBA38D */ra4  = -1.62396669462573470355e+02, /* 0xC0644CB1, 0x84282266 */ra5  = -1.84605092906711035994e+02, /* 0xC067135C, 0xEBCCABB2 */ra6  = -8.12874355063065934246e+01, /* 0xC0545265, 0x57E4D2F2 */ra7  = -9.81432934416914548592e+00, /* 0xC023A0EF, 0xC69AC25C */sa1  =  1.96512716674392571292e+01, /* 0x4033A6B9, 0xBD707687 */sa2  =  1.37657754143519042600e+02, /* 0x4061350C, 0x526AE721 */sa3  =  4.34565877475229228821e+02, /* 0x407B290D, 0xD58A1A71 */sa4  =  6.45387271733267880336e+02, /* 0x40842B19, 0x21EC2868 */sa5  =  4.29008140027567833386e+02, /* 0x407AD021, 0x57700314 */sa6  =  1.08635005541779435134e+02, /* 0x405B28A3, 0xEE48AE2C */sa7  =  6.57024977031928170135e+00, /* 0x401A47EF, 0x8E484A93 */sa8  = -6.04244152148580987438e-02, /* 0xBFAEEFF2, 0xEE749A62 *//* * Coefficients for approximation to  erfc in [1/.35,28] */rb0  = -9.86494292470009928597e-03, /* 0xBF843412, 0x39E86F4A */rb1  = -7.99283237680523006574e-01, /* 0xBFE993BA, 0x70C285DE */rb2  = -1.77579549177547519889e+01, /* 0xC031C209, 0x555F995A */rb3  = -1.60636384855821916062e+02, /* 0xC064145D, 0x43C5ED98 */rb4  = -6.37566443368389627722e+02, /* 0xC083EC88, 0x1375F228 */rb5  = -1.02509513161107724954e+03, /* 0xC0900461, 0x6A2E5992 */rb6  = -4.83519191608651397019e+02, /* 0xC07E384E, 0x9BDC383F */sb1  =  3.03380607434824582924e+01, /* 0x403E568B, 0x261D5190 */sb2  =  3.25792512996573918826e+02, /* 0x40745CAE, 0x221B9F0A */sb3  =  1.53672958608443695994e+03, /* 0x409802EB, 0x189D5118 */sb4  =  3.19985821950859553908e+03, /* 0x40A8FFB7, 0x688C246A */sb5  =  2.55305040643316442583e+03, /* 0x40A3F219, 0xCEDF3BE6 */sb6  =  4.74528541206955367215e+02, /* 0x407DA874, 0xE79FE763 */sb7  = -2.24409524465858183362e+01; /* 0xC03670E2, 0x42712D62 */doubleErf(double x) {	int32_t hx,ix,i;	double R,S,P,Q,s,y,z,r;	GET_HIGH_WORD(hx,x);	ix = hx&0x7fffffff;	if(ix>=0x7ff00000) {		/* erf(nan)=nan */	    i = ((u_int32_t)hx>>31)<<1;	    return (double)(1-i)+one/x;	/* erf(+-inf)=+-1 */	}	if(ix < 0x3feb0000) {		/* |x|<0.84375 */	    if(ix < 0x3e300000) { 	/* |x|<2**-28 */	        if (ix < 0x00800000) 		    return 0.125*(8.0*x+efx8*x);  /*avoid underflow */		return x + efx*x;	    }	    z = x*x;	    r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4)));	    s = one+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5))));	    y = r/s;	    return x + x*y;	}	if(ix < 0x3ff40000) {		/* 0.84375 <= |x| < 1.25 */	    s = fabs(x)-one;	    P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))));	    Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))));	    if(hx>=0) return erx + P/Q; else return -erx - P/Q;	}	if (ix >= 0x40180000) {		/* inf>|x|>=6 */	    if(hx>=0) return one-tiny; else return tiny-one;	}	x = fabs(x); 	s = one/(x*x);	if(ix< 0x4006DB6E) {	/* |x| < 1/0.35 */	    R=ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*(				ra5+s*(ra6+s*ra7))))));	    S=one+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*(				sa5+s*(sa6+s*(sa7+s*sa8)))))));	} else {	/* |x| >= 1/0.35 */	    R=rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(				rb5+s*rb6)))));	    S=one+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*(				sb5+s*(sb6+s*sb7))))));	}	z  = x;  	SET_LOW_WORD(z,0);	r  =  __ieee754_exp(-z*z-0.5625)*__ieee754_exp((z-x)*(z+x)+R/S);	if(hx>=0) return one-r/x; else return  r/x-one;}doubleErfc(double x) {	int32_t hx,ix;	double R,S,P,Q,s,y,z,r;	GET_HIGH_WORD(hx,x);	ix = hx&0x7fffffff;	if(ix>=0x7ff00000) {			/* erfc(nan)=nan */						/* erfc(+-inf)=0,2 */	    return (double)(((u_int32_t)hx>>31)<<1)+one/x;	}	if(ix < 0x3feb0000) {		/* |x|<0.84375 */	    if(ix < 0x3c700000)  	/* |x|<2**-56 */		return one-x;	    z = x*x;	    r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4)));	    s = one+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5))));	    y = r/s;	    if(hx < 0x3fd00000) {  	/* x<1/4 */		return one-(x+x*y);	    } else {		r = x*y;		r += (x-half);	        return half - r ;	    }	}	if(ix < 0x3ff40000) {		/* 0.84375 <= |x| < 1.25 */	    s = fabs(x)-one;	    P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))));	    Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))));	    if(hx>=0) {	        z  = one-erx; return z - P/Q; 	    } else {		z = erx+P/Q; return one+z;	    }	}	if (ix < 0x403c0000) {		/* |x|<28 */	    x = fabs(x); 	    s = one/(x*x);	    if(ix< 0x4006DB6D) {	/* |x| < 1/.35 ~ 2.857143*/	        R=ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*(				ra5+s*(ra6+s*ra7))))));	        S=one+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*(				sa5+s*(sa6+s*(sa7+s*sa8)))))));	    } else {			/* |x| >= 1/.35 ~ 2.857143 */		if(hx<0&&ix>=0x40180000) return two-tiny;/* x < -6 */	        R=rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(				rb5+s*rb6)))));	        S=one+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*(				sb5+s*(sb6+s*sb7))))));	    }	    z  = x;	    SET_LOW_WORD(z,0);	    r  =  __ieee754_exp(-z*z-0.5625)*			__ieee754_exp((z-x)*(z+x)+R/S);	    if(hx>0) return r/x; else return two-r/x;	} else {	    if(hx>0) return tiny*tiny; else return two-tiny;	}}#endif

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -