📄 contents.m
字号:
% Probabilistic models for principal component analysis (PCA) in the% presence of missing values. The model for each column of data matrix% is X(:,j) = Mu + A*S(:,j) + Noise. The noise is isotropic and% Gaussian with the variance V.%% PCA for data sets with missing values:% pca_full - Unrestricted Gaussian posterior for A(i,:) and S(:,j)% pca_diag - Fully factorial approximation of the posterior% pca_pt - Maximum a posteriori estimation% pcaimput - Imputation algorithm% lspca - Least-squares approach%% Cost function calculations:% cf_full - Cost for model with unrestricted posterior% cf_diag - Cost for model with fully factorial posterior% cf_pt - Cost for model with MAP estimation% compute_rms - RMS error and reconstruction error matrix% errpca_pt.cpp - Sparse matrix of reconstruction errors% errpca_diag.cpp - Sparse matrix of reconstruction errors and% extra parameters needed by PCA_DIAG%% Helpers:% rmempty - Remove empty columns or rows from data matrix% addmcols - Add unobserved columns to PCA solution% addmrows - Add unobserved rows to PCA solution% miscomb - Find combinations of missing values in columns% argschk - Check of parameter/value pairs% subtract_mu.cpp - Subtract bias term from sparse data matrix% converg_check - Check convergence criteria% pcaresults - Load results from an auto-save file%% Visualization:% subspace2d - Visualize principal components in 2D% covdg - Extract posterior variance of principal components% tsplot - Plot time series% addtsplot - Add time series to current figure% addebars - Add error bars to current figure%% This software is provided "as is", without warranty of any kind.% Alexander Ilin, Tapani Raiko
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -