⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 evd.java

📁 另一个功能更强大的矩阵运算软件开源代码
💻 JAVA
字号:
/* * Copyright (C) 2003-2006 Bjørn-Ove Heimsund *  * This file is part of MTJ. *  * This library is free software; you can redistribute it and/or modify it * under the terms of the GNU Lesser General Public License as published by the * Free Software Foundation; either version 2.1 of the License, or (at your * option) any later version. *  * This library is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License * for more details. *  * You should have received a copy of the GNU Lesser General Public License * along with this library; if not, write to the Free Software Foundation, * Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */package no.uib.cipr.matrix;import org.netlib.lapack.LAPACK;import org.netlib.util.intW;/** * Computes eigenvalue decompositions of general matrices */public class EVD {    /**     * Double work array     */    private final double[] work;    /**     * Size of the matrix     */    private final int n;    /**     * Job to do on the left and right eigenvectors     */    private final JobEig jobLeft, jobRight;    /**     * Contains the real and imaginary parts of the eigenvalues     */    private final double[] Wr, Wi;    /**     * Contains the left and the right eigenvectors     */    private final DenseMatrix Vl, Vr;    /**     * Creates an empty eigenvalue decomposition which will compute all the     * eigenvalues and eigenvectors (left and right)     *      * @param n     *            Size of the matrix     */    public EVD(int n) {        this(n, true, true);    }    /**     * Creates an empty eigenvalue decomposition     *      * @param n     *            Size of the matrix     * @param left     *            Whether to compute the left eigenvectors or not     * @param right     *            Whether to compute the right eigenvectors or not     */    public EVD(int n, boolean left, boolean right) {        this.n = n;        this.jobLeft = left ? JobEig.All : JobEig.Eigenvalues;        this.jobRight = right ? JobEig.All : JobEig.Eigenvalues;        // Allocate space for the decomposition        Wr = new double[n];        Wi = new double[n];        if (left)            Vl = new DenseMatrix(n, n);        else            Vl = null;        if (right)            Vr = new DenseMatrix(n, n);        else            Vr = null;        // Find the needed workspace        double[] worksize = new double[1];        intW info = new intW(0);        LAPACK.getInstance().dgeev(jobLeft.netlib(), jobRight.netlib(), n, new double[0],                Matrices.ld(n), new double[0], new double[0], new double[0], Matrices.ld(n),                new double[0], Matrices.ld(n), worksize, -1, info);        // Allocate workspace        int lwork = 0;        if (info.val != 0) {            if (jobLeft == JobEig.All || jobRight == JobEig.All)                lwork = 4 * n;            else                lwork = 3 * n;        } else            lwork = (int) worksize[0];        lwork = Math.max(1, lwork);        work = new double[lwork];    }    /**     * Convenience method for computing the complete eigenvalue decomposition of     * the given matrix     *      * @param A     *            Matrix to factorize. Not modified     * @return Newly allocated decomposition     * @throws NotConvergedException     */    public static EVD factorize(Matrix A) throws NotConvergedException {        return new EVD(A.numRows()).factor(new DenseMatrix(A));    }    /**     * Computes the eigenvalue decomposition of the given matrix     *      * @param A     *            Matrix to factorize. Overwritten on return     * @return The current decomposition     * @throws NotConvergedException     */    public EVD factor(DenseMatrix A) throws NotConvergedException {        if (!A.isSquare())            throw new IllegalArgumentException("!A.isSquare()");        else if (A.numRows() != n)            throw new IllegalArgumentException("A.numRows() != n");        intW info = new intW(0);        LAPACK.getInstance().dgeev(jobLeft.netlib(), jobRight.netlib(), n, A.getData(),                Matrices.ld(n), Wr, Wi, jobLeft == JobEig.All ? Vl.getData() : new double[0],                Matrices.ld(n), jobRight == JobEig.All ? Vr.getData() : new double[0], Matrices.ld(n),                work, work.length, info);        if (info.val > 0)            throw new NotConvergedException(                    NotConvergedException.Reason.Iterations);        else if (info.val < 0)            throw new IllegalArgumentException();        return this;    }    /**     * Gets the left eigenvectors, if available     */    public DenseMatrix getLeftEigenvectors() {        return Vl;    }    /**     * Gets the right eigenvectors, if available     */    public DenseMatrix getRightEigenvectors() {        return Vr;    }    /**     * Gets the real part of the eigenvalues     */    public double[] getRealEigenvalues() {        return Wr;    }    /**     * Gets the imaginary part of the eigenvalues     */    public double[] getImaginaryEigenvalues() {        return Wi;    }    /**     * True if the left eigenvectors have been computed     */    public boolean hasLeftEigenvectors() {        return Vl != null;    }    /**     * True if the right eigenvectors have been computed     */    public boolean hasRightEigenvectors() {        return Vr != null;    }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -