📄 amg.java
字号:
/* * Copyright (C) 2003-2006 Bjørn-Ove Heimsund * * This file is part of MTJ. * * This library is free software; you can redistribute it and/or modify it * under the terms of the GNU Lesser General Public License as published by the * Free Software Foundation; either version 2.1 of the License, or (at your * option) any later version. * * This library is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License * for more details. * * You should have received a copy of the GNU Lesser General Public License * along with this library; if not, write to the Free Software Foundation, * Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */package no.uib.cipr.matrix.sparse;import java.util.ArrayList;import java.util.Arrays;import java.util.HashMap;import java.util.HashSet;import java.util.LinkedList;import java.util.List;import java.util.Map;import java.util.Set;import no.uib.cipr.matrix.DenseLU;import no.uib.cipr.matrix.DenseMatrix;import no.uib.cipr.matrix.DenseVector;import no.uib.cipr.matrix.Matrix;import no.uib.cipr.matrix.Vector;/** * Algebraic multigrid preconditioner. Uses the smoothed aggregation method * described by Vanek, Mandel, and Brezina (1996). */public class AMG implements Preconditioner { /** * Relaxations at each level */ private SSOR[] preM, postM; /** * The number of levels */ private int m; /** * System matrix at each level, except at the coarsest */ private CompRowMatrix[] A; /** * LU factorization at the coarsest level */ private DenseLU lu; /** * Solution, right-hand side, and residual vectors at each level */ private DenseVector[] u, f, r; /** * Interpolation operators going to a finer mesh */ private CompColMatrix[] I; /** * Smallest matrix size before terminating the AMG setup phase. Matrices * smaller than this will be solved by a direct solver */ private final int min; /** * Number of times to perform the pre- and post-smoothings */ private final int nu1, nu2; /** * Determines cycle type. gamma=1 is V, gamma=2 is W */ private final int gamma; /** * Overrelaxation parameters in the pre- and post-smoothings, and with the * possibility of distinct values in the forward and reverse sweeps */ private final double omegaPreF, omegaPreR, omegaPostF, omegaPostR; /** * Perform a reverse (backwards) smoothing sweep */ private final boolean reverse; /** * Jacobi damping parameter, between zero and one. If it equals zero, the * method reduces to the standard aggregate multigrid method */ private final double omega; /** * Operating in transpose mode? */ private boolean transpose; /** * Sets up the algebraic multigrid preconditioner * * @param omegaPreF * Overrelaxation parameter in the forward sweep of the * pre-smoothing * @param omegaPreR * Overrelaxation parameter in the backwards sweep of the * pre-smoothing * @param omegaPostF * Overrelaxation parameter in the forward sweep of the * post-smoothing * @param omegaPostR * Overrelaxation parameter in the backwards sweep of the * post-smoothing * @param nu1 * Number of pre-relaxations to perform * @param nu2 * Number of post-relaxations to perform * @param gamma * Number of times to go to a coarser level * @param min * Smallest matrix size before using a direct solver * @param omega * Jacobi damping parameter, between zero and one. If it equals * zero, the method reduces to the standard aggregate multigrid * method */ public AMG(double omegaPreF, double omegaPreR, double omegaPostF, double omegaPostR, int nu1, int nu2, int gamma, int min, double omega) { this.omegaPreF = omegaPreF; this.omegaPreR = omegaPreR; this.omegaPostF = omegaPostF; this.omegaPostR = omegaPostR; reverse = true; this.nu1 = nu1; this.nu2 = nu2; this.gamma = gamma; this.min = min; this.omega = omega; } /** * Sets up the algebraic multigrid preconditioner. Uses an SOR method, * without the backward sweep in SSOR * * @param omegaPre * Overrelaxation parameter in the pre-smoothing * @param omegaPost * Overrelaxation parameter in the post-smoothing * @param nu1 * Number of pre-relaxations to perform * @param nu2 * Number of post-relaxations to perform * @param gamma * Number of times to go to a coarser level * @param min * Smallest matrix size before using a direct solver * @param omega * Jacobi damping parameter, between zero and one. If it equals * zero, the method reduces to the standard aggregate multigrid * method */ public AMG(double omegaPre, double omegaPost, int nu1, int nu2, int gamma, int min, double omega) { this.omegaPreF = omegaPre; this.omegaPreR = omegaPre; this.omegaPostF = omegaPost; this.omegaPostR = omegaPost; reverse = false; this.nu1 = nu1; this.nu2 = nu2; this.gamma = gamma; this.min = min; this.omega = omega; } /** * Sets up the algebraic multigrid preconditioner using some default * parameters. In the presmoothing, <code>omegaF=1</code> and * <code>omegaR=1.85</code>, while in the postsmoothing, * <code>omegaF=1.85</code> and <code>omegaR=1</code>. Sets * <code>nu1=nu2=gamma=1</code>, has a smallest matrix size of 40, and * sets <code>omega=2/3</code>. */ public AMG() { this(1, 1.85, 1.85, 1, 1, 1, 1, 40, 2. / 3); } public Vector apply(Vector b, Vector x) { u[0].set(x); f[0].set(b); transpose = false; cycle(0); return x.set(u[0]); } public Vector transApply(Vector b, Vector x) { u[0].set(x); f[0].set(b); transpose = true; cycle(0); return x.set(u[0]); } public void setMatrix(Matrix A) { List<CompRowMatrix> Al = new LinkedList<CompRowMatrix>(); List<CompColMatrix> Il = new LinkedList<CompColMatrix>(); Al.add(new CompRowMatrix(A)); for (int k = 0; Al.get(k).numRows() > min; ++k) { CompRowMatrix Af = Al.get(k); double eps = 0.08 * Math.pow(0.5, k); // Create the aggregates Aggregator aggregator = new Aggregator(Af, eps); // If no aggregates were created, no interpolation operator will be // created, and the setup phase stops if (aggregator.getAggregates().size() == 0) break; // Create an interpolation operator using smoothing. This also // creates the Galerkin operator Interpolator sa = new Interpolator(aggregator, Af, omega); Al.add(sa.getGalerkinOperator()); Il.add(sa.getInterpolationOperator()); } // Copy to array storage m = Al.size(); if (m == 0) throw new RuntimeException("Matrix too small for AMG"); I = new CompColMatrix[m - 1]; this.A = new CompRowMatrix[m - 1]; Il.toArray(I); for (int i = 0; i < Al.size() - 1; ++i) this.A[i] = Al.get(i); // Create a LU decomposition of the smallest Galerkin matrix DenseMatrix Ac = new DenseMatrix(Al.get(Al.size() - 1)); lu = new DenseLU(Ac.numRows(), Ac.numColumns()); lu.factor(Ac); // Allocate vectors at each level u = new DenseVector[m]; f = new DenseVector[m]; r = new DenseVector[m]; for (int k = 0; k < m; ++k) { int n = Al.get(k).numRows(); u[k] = new DenseVector(n); f[k] = new DenseVector(n); r[k] = new DenseVector(n); } // Set up the SSOR relaxation schemes preM = new SSOR[m - 1]; postM = new SSOR[m - 1]; for (int k = 0; k < m - 1; ++k) { CompRowMatrix Ak = this.A[k]; preM[k] = new SSOR(Ak, reverse, omegaPreF, omegaPreR); postM[k] = new SSOR(Ak, reverse, omegaPostF, omegaPostR); preM[k].setMatrix(Ak); postM[k].setMatrix(Ak); } } /** * Performs a multigrid cycle * * @param k * Level to cycle at. Start by calling <code>cycle(0)</code> */ private void cycle(int k) { if (k == m - 1) directSolve(); else { // Presmoothings preRelax(k); u[k + 1].zero(); // Compute the residual A[k].multAdd(-1, u[k], r[k].set(f[k])); // Restrict to the next coarser level I[k].transMult(r[k], f[k + 1]); // Recurse to next level for (int i = 0; i < gamma; ++i) cycle(k + 1); // Add residual correction by prolongation I[k].multAdd(u[k + 1], u[k]); // Postsmoothings postRelax(k); } } /** * Solves directly at the coarsest level */ private void directSolve() { int k = m - 1; u[k].set(f[k]); DenseMatrix U = new DenseMatrix(u[k], false); if (transpose) lu.transSolve(U); else lu.solve(U); } /** * Applies the relaxation scheme at the given level * * @param k * Multigrid level */ private void preRelax(int k) { for (int i = 0; i < nu1; ++i) if (transpose) preM[k].transApply(f[k], u[k]); else preM[k].apply(f[k], u[k]); } /** * Applies the relaxation scheme at the given level * * @param k * Multigrid level */ private void postRelax(int k) { for (int i = 0; i < nu2; ++i) if (transpose) postM[k].transApply(f[k], u[k]); else postM[k].apply(f[k], u[k]); } /** * Creates aggregates. These are disjoint sets, each of which represents one * node at a coarser mesh by aggregating together a set of fine nodes */ private static class Aggregator { /** * The aggregates */ private List<Set<Integer>> C; /** * Diagonal indices into the sparse matrix */ private int[] diagind; /** * The strongly coupled node neighborhood of a given node */ private List<Set<Integer>> N; /** * Creates the aggregates * * @param A * Sparse matrix * @param eps * Tolerance for selecting the strongly coupled node * neighborhoods. Between zero and one. */ public Aggregator(CompRowMatrix A, double eps) { diagind = findDiagonalIndices(A); N = findNodeNeighborhood(A, diagind, eps); /* * Initialization. Remove isolated nodes from the aggregates */ boolean[] R = createInitialR(A); /* * Startup aggregation. Use disjoint strongly coupled neighborhoods * as the initial aggregate approximation */ C = createInitialAggregates(N, R); /* * Enlargment of the aggregates. Add nodes to each aggregate based * on how strongly connected the nodes are to a given aggregate */ C = enlargeAggregates(C, N, R); /* * Handling of the remenants. Put all remaining unallocated nodes * into new aggregates defined by the intersection of N and R */ C = createFinalAggregates(C, N, R); } /** * Gets the aggregates */ public List<Set<Integer>> getAggregates() { return C; } /** * Returns the matrix diagonal indices. This is a by-product of the * aggregation */ public int[] getDiagonalIndices() { return diagind; } /** * Returns the strongly coupled node neighborhoods of a given node. This * is a by-product of the aggregation */ public List<Set<Integer>> getNodeNeighborhoods() { return N; } /** * Finds the diagonal indices of the matrix */ private int[] findDiagonalIndices(CompRowMatrix A) { int[] rowptr = A.getRowPointers(); int[] colind = A.getColumnIndices(); int[] diagind = new int[A.numRows()];
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -