⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 sparsevector.java

📁 另一个功能更强大的矩阵运算软件开源代码
💻 JAVA
字号:
/* * Copyright (C) 2003-2006 Bjørn-Ove Heimsund *  * This file is part of MTJ. *  * This library is free software; you can redistribute it and/or modify it * under the terms of the GNU Lesser General Public License as published by the * Free Software Foundation; either version 2.1 of the License, or (at your * option) any later version. *  * This library is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License * for more details. *  * You should have received a copy of the GNU Lesser General Public License * along with this library; if not, write to the Free Software Foundation, * Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */package no.uib.cipr.matrix.sparse;import java.util.Iterator;import no.uib.cipr.matrix.AbstractVector;import no.uib.cipr.matrix.DenseVector;import no.uib.cipr.matrix.Matrices;import no.uib.cipr.matrix.Vector;import no.uib.cipr.matrix.VectorEntry;/** * Sparse vector */public class SparseVector extends AbstractVector implements ISparseVector {    /**     * Data     */    double[] data;    /**     * Indices to data     */    int[] index;    /**     * How much has been used     */    int used;    /**     * Constructor for SparseVector.     *      * @param size     *            Size of the vector     * @param nz     *            Initial number of non-zeros     */    public SparseVector(int size, int nz) {        super(size);        data = new double[nz];        index = new int[nz];    }    /**     * Constructor for SparseVector, and copies the contents from the supplied     * vector.     *      * @param x     *            Vector to copy from     * @param deep     *            True if a deep copy is to be made. If the copy is shallow,     *            <code>x</code> must be a <code>SparseVector</code>     */    public SparseVector(Vector x, boolean deep) {        super(x);        if (deep) {            int nz = Matrices.cardinality(x);            data = new double[nz];            index = new int[nz];            set(x);        } else {            SparseVector xs = (SparseVector) x;            data = xs.getData();            index = xs.getIndex();            used = xs.getUsed();        }    }    /**     * Constructor for SparseVector, and copies the contents from the supplied     * vector. Zero initial pre-allocation     *      * @param x     *            Vector to copy from. A deep copy is made     */    public SparseVector(Vector x) {        this(x, true);    }    /**     * Constructor for SparseVector. Zero initial pre-allocation     *      * @param size     *            Size of the vector     */    public SparseVector(int size) {        this(size, 0);    }    /**     * Constructor for SparseVector     *      * @param size     *            Size of the vector     * @param index     *            Indices of the vector     * @param data     *            Entries of the vector     * @param deep     *            True for a deep copy. For shallow copies, the given indices     *            will be used internally     */    public SparseVector(int size, int[] index, double[] data, boolean deep) {        super(size);        if (index.length != data.length)            throw new IllegalArgumentException("index.length != data.length");        if (deep) {            used = index.length;            this.index = index.clone();            this.data = data.clone();        } else {            this.index = index;            this.data = data;            used = index.length;        }    }    /**     * Constructor for SparseVector     *      * @param size     *            Size of the vector     * @param index     *            The vector indices are copies from this array     * @param data     *            The vector entries are copies from this array     */    public SparseVector(int size, int[] index, double[] data) {        this(size, index, data, true);    }    @Override    public void set(int index, double value) {        check(index);        // TODO: should we check against zero when setting zeros?                int i = getIndex(index);        data[i] = value;    }    @Override    public void add(int index, double value) {        check(index);        int i = getIndex(index);        data[i] += value;    }    @Override    public double get(int index) {        check(index);        int in = Arrays.binarySearch(this.index, index, 0, used);        if (in >= 0)            return data[in];        return 0;    }    /**     * Tries to find the index. If it is not found, a reallocation is done, and     * a new index is returned.     */    private int getIndex(int ind) {        // Try to find column index        int i = Arrays.binarySearchGreater(index, ind, 0, used);        // Found        if (i < used && index[i] == ind)            return i;        int[] newIndex = index;        double[] newData = data;        // Check available memory        if (++used > data.length) {            // If zero-length, use new length of 1, else double the bandwidth            int newLength = data.length != 0 ? data.length << 1 : 1;            // Copy existing data into new arrays            newIndex = new int[newLength];            newData = new double[newLength];            System.arraycopy(index, 0, newIndex, 0, i);            System.arraycopy(data, 0, newData, 0, i);        }        // All ok, make room for insertion        System.arraycopy(index, i, newIndex, i + 1, used - i - 1);        System.arraycopy(data, i, newData, i + 1, used - i - 1);        // Put in new structure        newIndex[i] = ind;        newData[i] = 0.;        // Update pointers        index = newIndex;        data = newData;        // Return insertion index        return i;    }    @Override    public SparseVector copy() {        return new SparseVector(this);    }    @Override    public SparseVector zero() {        java.util.Arrays.fill(data, 0);        return this;    }    @Override    public SparseVector scale(double alpha) {        // Quick return if possible        if (alpha == 0)            return zero();        else if (alpha == 1)            return this;        for (int i = 0; i < used; ++i)            data[i] *= alpha;        return this;    }    @Override    public double dot(Vector y) {        if (!(y instanceof DenseVector))            return super.dot(y);        checkSize(y);        double[] yd = ((DenseVector) y).getData();        double ret = 0;        for (int i = 0; i < used; ++i)            ret += data[i] * yd[index[i]];        return ret;    }    @Override    protected double norm1() {        double sum = 0;        for (int i = 0; i < used; ++i)            sum += Math.abs(data[i]);        return sum;    }    @Override    protected double norm2() {        double norm = 0;        for (int i = 0; i < used; ++i)            norm += data[i] * data[i];        return Math.sqrt(norm);    }    @Override    protected double norm2_robust() {        double scale = 0, ssq = 1;        for (int i = 0; i < used; ++i) {            if (data[i] != 0) {                double absxi = Math.abs(data[i]);                if (scale < absxi) {                    ssq = 1 + ssq * Math.pow(scale / absxi, 2);                    scale = absxi;                } else                    ssq = ssq + Math.pow(absxi / scale, 2);            }        }        return scale * Math.sqrt(ssq);    }    @Override    protected double normInf() {        double max = 0;        for (int i = 0; i < used; ++i)            max = Math.max(Math.abs(data[i]), max);        return max;    }    /**     * Returns the internal data     */    public double[] getData() {        return data;    }    /**     * Returns the indices     */    public int[] getIndex() {    	if (used == index.length)    		return index;    	    	// could run compact, or return subarray    	// compact();    	int [] indices = new int[used];    	for (int i = 0 ; i < used; i++) {    		indices[i] = index[i];    	}    	return indices;    }    /**     * Number of entries used in the sparse structure     */    public int getUsed() {        return used;    }    /**     * Compacts the vector     */    public void compact() {        int nz = used;        // ??: why was this originally using cardinality?        // int nz = Matrices.cardinality(this);        if (nz < data.length) {            int[] newIndex = new int[nz];            double[] newData = new double[nz];            // Copy only non-zero entries            for (int i = 0, j = 0; i < data.length; ++i)                if (data[i] != 0.) {                    newIndex[j] = index[i];                    newData[j] = data[i];                    j++;                }            data = newData;            index = newIndex;            used = data.length;        }    }    @Override    public Iterator<VectorEntry> iterator() {        return new SparseVectorIterator();    }    @Override    public Vector set(Vector y) {        if (!(y instanceof SparseVector))            return super.set(y);        checkSize(y);        SparseVector yc = (SparseVector) y;        if (yc.index.length != index.length) {            data = new double[yc.data.length];            index = new int[yc.data.length];        }        System.arraycopy(yc.data, 0, data, 0, data.length);        System.arraycopy(yc.index, 0, index, 0, index.length);        used = yc.used;        return this;    }    /**     * Iterator over a sparse vector     */    private class SparseVectorIterator implements Iterator<VectorEntry> {        private int cursor;        private final SparseVectorEntry entry = new SparseVectorEntry();        public boolean hasNext() {            return cursor < used;        }        public VectorEntry next() {            entry.update(cursor);            cursor++;            return entry;        }        public void remove() {            entry.set(0);        }    }    /**     * Entry of a sparse vector     */    private class SparseVectorEntry implements VectorEntry {        private int cursor;        public void update(int cursor) {            this.cursor = cursor;        }        public int index() {            return index[cursor];        }        public double get() {            return data[cursor];        }        public void set(double value) {            data[cursor] = value;        }    }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -