📄 abstractsymmbandmatrix.java
字号:
/* * Copyright (C) 2003-2006 Bjørn-Ove Heimsund * * This file is part of MTJ. * * This library is free software; you can redistribute it and/or modify it * under the terms of the GNU Lesser General Public License as published by the * Free Software Foundation; either version 2.1 of the License, or (at your * option) any later version. * * This library is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License * for more details. * * You should have received a copy of the GNU Lesser General Public License * along with this library; if not, write to the Free Software Foundation, * Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */package no.uib.cipr.matrix;import java.util.Iterator;import org.netlib.blas.BLAS;import org.netlib.lapack.LAPACK;import org.netlib.util.intW;/** * Partial implementation of a symmetrical, banded matrix */abstract class AbstractSymmBandMatrix extends AbstractBandMatrix { /** * Upper or lower part stored? */ private UpLo uplo; /** * Diagonals in relevant band */ int kd; /** * Constructor for AbstractSymmBandMatrix */ AbstractSymmBandMatrix(int n, int kl, int ku, UpLo uplo) { super(n, kl, ku); kd = Math.max(kl, ku); this.uplo = uplo; } /** * Constructor for AbstractSymmBandMatrix */ AbstractSymmBandMatrix(Matrix A, int kl, int ku, UpLo uplo) { this(A, kl, ku, true, uplo); } /** * Constructor for AbstractSymmBandMatrix */ AbstractSymmBandMatrix(Matrix A, int kl, int ku, boolean deep, UpLo uplo) { super(A, kl, ku, deep); kd = Math.max(kl, ku); this.uplo = uplo; } @Override public Vector multAdd(double alpha, Vector x, Vector y) { if (!(x instanceof DenseVector) || !(y instanceof DenseVector)) return super.multAdd(alpha, x, y); checkMultAdd(x, y); double[] xd = ((DenseVector) x).getData(), yd = ((DenseVector) y) .getData(); BLAS.getInstance().dsbmv(uplo.netlib(), numRows, kd, alpha, data, kd + 1, xd, 1, 1, yd, 1); return y; } @Override public Vector transMultAdd(double alpha, Vector x, Vector y) { return multAdd(alpha, x, y); } @Override public Iterator<MatrixEntry> iterator() { return new BandMatrixIterator(kd, kd); } @Override public Matrix solve(Matrix B, Matrix X) { if (!(X instanceof DenseMatrix)) throw new UnsupportedOperationException("X must be a DenseMatrix"); checkSolve(B, X); double[] Xd = ((DenseMatrix) X).getData(); X.set(B); // Allocate factorization matrix. The factorization matrix will be // large enough to accomodate any pivots BandMatrix Af = new BandMatrix(this, kd, kd + kd); int[] ipiv = new int[numRows]; intW info = new intW(0); LAPACK.getInstance().dgbsv(numRows, kd, kd, X.numColumns(), Af.getData(), Matrices.ld(2 * kd + kd + 1), ipiv, Xd, Matrices.ld(numRows), info); if (info.val > 0) throw new MatrixSingularException(); else if (info.val < 0) throw new IllegalArgumentException(); return X; } @Override public Vector solve(Vector b, Vector x) { DenseMatrix B = new DenseMatrix(b, false), X = new DenseMatrix(x, false); solve(B, X); return x; } @Override public Matrix transSolve(Matrix B, Matrix X) { return solve(B, X); } @Override public Vector transSolve(Vector b, Vector x) { return solve(b, x); } Matrix SPDsolve(Matrix B, Matrix X) { if (!(X instanceof DenseMatrix)) throw new UnsupportedOperationException("X must be a DenseMatrix"); checkSolve(B, X); double[] Xd = ((DenseMatrix) X).getData(); X.set(B); intW info = new intW(0); LAPACK.getInstance().dpbsv(uplo.netlib(), numRows, kd, X.numColumns(), data.clone(), Matrices.ld(kd + 1), Xd, Matrices.ld(numRows), info); if (info.val > 0) throw new MatrixNotSPDException(); else if (info.val < 0) throw new IllegalArgumentException(); return X; } @Override public Matrix transpose() { return this; }}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -