📄 abstractsymmdensematrix.java
字号:
/* * Copyright (C) 2003-2006 Bjørn-Ove Heimsund * * This file is part of MTJ. * * This library is free software; you can redistribute it and/or modify it * under the terms of the GNU Lesser General Public License as published by the * Free Software Foundation; either version 2.1 of the License, or (at your * option) any later version. * * This library is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License * for more details. * * You should have received a copy of the GNU Lesser General Public License * along with this library; if not, write to the Free Software Foundation, * Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */package no.uib.cipr.matrix;import org.netlib.blas.BLAS;import org.netlib.lapack.LAPACK;import org.netlib.util.intW;/** * Partial implementation of a symmetrical, dense matrix */abstract class AbstractSymmDenseMatrix extends AbstractDenseMatrix { /** * Upper or lower part stored? */ private UpLo uplo; /** * Constructor for AbstractSymmDenseMatrix */ AbstractSymmDenseMatrix(int n, UpLo uplo) { super(n, n); this.uplo = uplo; } /** * Constructor for AbstractSymmDenseMatrix */ AbstractSymmDenseMatrix(Matrix A, UpLo uplo) { this(A, true, uplo); } /** * Constructor for AbstractSymmDenseMatrix */ AbstractSymmDenseMatrix(Matrix A, boolean deep, UpLo uplo) { super(A, deep); if (!isSquare()) throw new IllegalArgumentException( "Symmetric matrix must be square"); this.uplo = uplo; } @Override public Matrix multAdd(double alpha, Matrix B, Matrix C) { if (!(B instanceof DenseMatrix) || !(C instanceof DenseMatrix)) return super.multAdd(alpha, B, C); checkMultAdd(B, C); double[] Bd = ((DenseMatrix) B).getData(), Cd = ((DenseMatrix) C) .getData(); BLAS.getInstance().dsymm(Side.Left.netlib(), uplo.netlib(), C.numRows(), C.numColumns(), alpha, data, Math.max(1, C.numRows()), Bd, Math.max(1, C.numRows()), 1, Cd, Math.max(1, C.numRows())); return C; } @Override public Matrix transAmultAdd(double alpha, Matrix B, Matrix C) { return multAdd(alpha, B, C); } @Override public Matrix rank1(double alpha, Vector x, Vector y) { if (x != y) throw new IllegalArgumentException("x != y"); if (!(x instanceof DenseVector)) return super.rank1(alpha, x, y); checkRank1(x, y); double[] xd = ((DenseVector) x).getData(); BLAS.getInstance().dsyr(uplo.netlib(), numRows, alpha, xd, 1, data, Math.max(1, numRows)); return this; } @Override public Matrix rank2(double alpha, Vector x, Vector y) { if (!(x instanceof DenseVector) || !(y instanceof DenseVector)) return super.rank2(alpha, x, y); checkRank2(x, y); double[] xd = ((DenseVector) x).getData(), yd = ((DenseVector) y) .getData(); BLAS.getInstance().dsyr2(uplo.netlib(), numRows, alpha, xd, 1, yd, 1, data, Math.max(1, numRows)); return this; } @Override public Vector multAdd(double alpha, Vector x, Vector y) { if (!(x instanceof DenseVector) || !(y instanceof DenseVector)) return super.multAdd(alpha, x, y); checkMultAdd(x, y); double[] xd = ((DenseVector) x).getData(), yd = ((DenseVector) y) .getData(); BLAS.getInstance().dsymv(uplo.netlib(), numRows, alpha, data, Math.max(1, numRows), xd, 1, 1, yd, 1); return y; } @Override public Vector transMultAdd(double alpha, Vector x, Vector y) { return multAdd(alpha, x, y); } @Override public Matrix rank1(double alpha, Matrix C) { if (!(C instanceof DenseMatrix)) return super.rank1(alpha, C); checkRank1(C); double[] Cd = ((DenseMatrix) C).getData(); BLAS.getInstance().dsyrk(uplo.netlib(), Transpose.NoTranspose.netlib(), numRows, C.numColumns(), alpha, Cd, Math.max(1, numRows), 1, data, Math.max(1, numRows)); return this; } @Override public Matrix transRank1(double alpha, Matrix C) { if (!(C instanceof DenseMatrix)) return super.transRank1(alpha, C); checkTransRank1(C); double[] Cd = ((DenseMatrix) C).getData(); BLAS.getInstance().dsyrk(uplo.netlib(), Transpose.Transpose.netlib(), numRows, numRows, alpha, Cd, Math.max(1, numRows), 1, data, Math.max(1, numRows)); return this; } @Override public Matrix rank2(double alpha, Matrix B, Matrix C) { if (!(B instanceof DenseMatrix) || !(C instanceof DenseMatrix)) return super.rank2(alpha, B, C); checkRank2(B, C); double[] Bd = ((DenseMatrix) B).getData(), Cd = ((DenseMatrix) C) .getData(); BLAS.getInstance().dsyr2k(uplo.netlib(), Transpose.NoTranspose.netlib(), numRows, B.numColumns(), alpha, Bd, Math.max(1, numRows), Cd, Math.max(1, numRows), 1, data, Math.max(1, numRows)); return this; } @Override public Matrix transRank2(double alpha, Matrix B, Matrix C) { if (!(B instanceof DenseMatrix) || !(C instanceof DenseMatrix)) return super.transRank2(alpha, B, C); checkTransRank2(B, C); double[] Bd = ((DenseMatrix) B).getData(), Cd = ((DenseMatrix) C) .getData(); BLAS.getInstance().dsyr2k(uplo.netlib(), Transpose.Transpose.netlib(), numRows, B.numRows(), alpha, Bd, Math.max(1, B.numRows()), Cd, Math.max(1, B.numRows()), 1, data, Math.max(1, numRows)); return this; } @Override public Matrix solve(Matrix B, Matrix X) { if (!(X instanceof DenseMatrix)) throw new UnsupportedOperationException("X must be a DenseMatrix"); checkSolve(B, X); double[] Xd = ((DenseMatrix) X).getData(); X.set(B); // Allocate factorization matrix double[] newData = data.clone(); int[] ipiv = new int[numRows]; // Query optimal workspace double[] work = new double[1]; intW info = new intW(0); LAPACK.getInstance().dsysv(uplo.netlib(), numRows, X.numColumns(), newData, Matrices.ld(numRows), ipiv, Xd, Matrices.ld(numRows), work, -1, info); // Allocate workspace int lwork = -1; if (info.val != 0) lwork = 1; else lwork = Math.max((int) work[0], 1); work = new double[lwork]; // Solve info.val = 0; LAPACK.getInstance().dsysv(uplo.netlib(), numRows, X.numColumns(), newData, Matrices.ld(numRows), ipiv, Xd, Matrices.ld(numRows), work, lwork, info); if (info.val > 0) throw new MatrixSingularException(); else if (info.val < 0) throw new IllegalArgumentException(); return X; } @Override public Vector solve(Vector b, Vector x) { DenseMatrix B = new DenseMatrix(b, false), X = new DenseMatrix(x, false); solve(B, X); return x; } @Override public Matrix transSolve(Matrix B, Matrix X) { return solve(B, X); } @Override public Vector transSolve(Vector b, Vector x) { return solve(b, x); } Matrix SPDsolve(Matrix B, Matrix X) { if (!(X instanceof DenseMatrix)) throw new UnsupportedOperationException("X must be a DenseMatrix"); checkSolve(B, X); double[] Xd = ((DenseMatrix) X).getData(); X.set(B); intW info = new intW(0); LAPACK.getInstance().dposv(uplo.netlib(), numRows, X.numColumns(), data.clone(), Matrices.ld(numRows), Xd, Matrices.ld(numRows), info); if (info.val > 0) throw new MatrixNotSPDException(); else if (info.val < 0) throw new IllegalArgumentException(); return X; } @Override public Matrix transpose() { return this; }}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -