⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 ql.java

📁 另一个功能更强大的矩阵运算软件开源代码
💻 JAVA
字号:
/* * Copyright (C) 2003-2006 Bjørn-Ove Heimsund *  * This file is part of MTJ. *  * This library is free software; you can redistribute it and/or modify it * under the terms of the GNU Lesser General Public License as published by the * Free Software Foundation; either version 2.1 of the License, or (at your * option) any later version. *  * This library is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License * for more details. *  * You should have received a copy of the GNU Lesser General Public License * along with this library; if not, write to the Free Software Foundation, * Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */package no.uib.cipr.matrix;import org.netlib.lapack.LAPACK;import org.netlib.util.intW;/** * Computes QL decompositions */public class QL extends OrthogonalComputer {    /**     * Constructs an empty QL decomposition     *      * @param m     *            Number of rows. Must be larger than or equal the number of     *            columns     * @param n     *            Number of columns     */    public QL(int m, int n) {        super(m, n, false);        if (n > m)            throw new IllegalArgumentException("n > m");        int lwork;        // Query optimal workspace. First for computing the factorization        {            work = new double[1];            intW info = new intW(0);            LAPACK.getInstance().dgeqlf(m, n, new double[0], Matrices.ld(m), new double[0],                    work, -1, info);            if (info.val != 0)                lwork = n;            else                lwork = (int) work[0];            lwork = Math.max(1, lwork);            work = new double[lwork];        }        // Workspace needed for generating an explicit orthogonal matrix        {            workGen = new double[1];            intW info = new intW(0);            LAPACK.getInstance().dorgql(m, n, k, new double[0],            	 Matrices.ld(m), new double[0], workGen, -1, info);            if (info.val != 0)                lwork = n;            else                lwork = (int) workGen[0];            lwork = Math.max(1, lwork);            workGen = new double[lwork];        }    }    /**     * Convenience method to compute a QL decomposition     *      * @param A     *            Matrix to decompose. Not modified     * @return Newly allocated decomposition     */    public static QL factorize(Matrix A) {        return new QL(A.numRows(), A.numColumns()).factor(new DenseMatrix(A));    }    @Override    public QL factor(DenseMatrix A) {        if (Q.numRows() != A.numRows())            throw new IllegalArgumentException("Q.numRows() != A.numRows()");        else if (Q.numColumns() != A.numColumns())            throw new IllegalArgumentException(                    "Q.numColumns() != A.numColumns()");        else if (L == null)            throw new IllegalArgumentException("L == null");        /*         * Calculate factorisation, and extract the triangular factor         */        intW info = new intW(0);        LAPACK.getInstance().dgeqlf(m, n, A.getData(), Matrices.ld(m), tau, work,                work.length, info);        if (info.val < 0)            throw new IllegalArgumentException();        L.zero();        for (MatrixEntry e : A)            if (e.row() >= (m - n) + e.column())                L.set(e.row() - (m - n), e.column(), e.get());        /*         * Generate the orthogonal matrix         */        info.val = 0;        LAPACK.getInstance().dorgql(m, n, k, A.getData(), Matrices.ld(m), tau, workGen,                workGen.length, info);        if (info.val < 0)            throw new IllegalArgumentException();        Q.set(A);        return this;    }    /**     * Returns the lower triangular factor     */    public LowerTriangDenseMatrix getL() {        return L;    }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -