📄 lq.java
字号:
/* * Copyright (C) 2003-2006 Bjørn-Ove Heimsund * * This file is part of MTJ. * * This library is free software; you can redistribute it and/or modify it * under the terms of the GNU Lesser General Public License as published by the * Free Software Foundation; either version 2.1 of the License, or (at your * option) any later version. * * This library is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License * for more details. * * You should have received a copy of the GNU Lesser General Public License * along with this library; if not, write to the Free Software Foundation, * Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */package no.uib.cipr.matrix;import org.netlib.lapack.LAPACK;import org.netlib.util.intW;/** * Computes LQ decompositions */public class LQ extends OrthogonalComputer { /** * Constructs an empty LQ decomposition * * @param m * Number of rows * @param n * Number of columns. Must be larger than or equal the number of * rows */ public LQ(int m, int n) { super(m, n, false); if (n < m) throw new IllegalArgumentException("n < m"); int lwork; // Query optimal workspace. First for computing the factorization { work = new double[1]; intW info = new intW(0); LAPACK.getInstance().dgelqf(m, n, new double[0], Matrices.ld(m), new double[0], work, -1, info); if (info.val != 0) lwork = m; else lwork = (int) work[0]; lwork = Math.max(1, lwork); work = new double[lwork]; } // Workspace needed for generating an explicit orthogonal matrix { workGen = new double[1]; intW info = new intW(0); LAPACK.getInstance().dorglq(m, n, m, new double[0], Matrices.ld(m), new double[0], workGen, -1, info); if (info.val != 0) lwork = m; else lwork = (int) workGen[0]; lwork = Math.max(1, lwork); workGen = new double[lwork]; } } /** * Convenience method to compute a LQ decomposition * * @param A * Matrix to decompose. Not modified * @return Newly allocated decomposition */ public static LQ factorize(Matrix A) { return new LQ(A.numRows(), A.numColumns()).factor(new DenseMatrix(A)); } @Override public LQ factor(DenseMatrix A) { if (Q.numRows() != A.numRows()) throw new IllegalArgumentException("Q.numRows() != A.numRows()"); else if (Q.numColumns() != A.numColumns()) throw new IllegalArgumentException( "Q.numColumns() != A.numColumns()"); else if (L == null) throw new IllegalArgumentException("L == null"); /* * Calculate factorisation, and extract the triangular factor */ intW info = new intW(0); LAPACK.getInstance().dgelqf(m, n, A.getData(), Matrices.ld(m), tau, work, work.length, info); if (info.val < 0) throw new IllegalArgumentException(); L.zero(); for (MatrixEntry e : A) if (e.row() >= e.column()) L.set(e.row(), e.column(), e.get()); /* * Generate the orthogonal matrix */ info.val = 0; LAPACK.getInstance().dorglq(m, n, k, A.getData(), Matrices.ld(m), tau, workGen, workGen.length, info); if (info.val < 0) throw new IllegalArgumentException(); Q.set(A); return this; } /** * Returns the lower triangular factor */ public LowerTriangDenseMatrix getL() { return L; }}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -