⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 symmdenseevd.java

📁 另一个功能更强大的矩阵运算软件开源代码
💻 JAVA
字号:
/* * Copyright (C) 2003-2006 Bjørn-Ove Heimsund *  * This file is part of MTJ. *  * This library is free software; you can redistribute it and/or modify it * under the terms of the GNU Lesser General Public License as published by the * Free Software Foundation; either version 2.1 of the License, or (at your * option) any later version. *  * This library is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License * for more details. *  * You should have received a copy of the GNU Lesser General Public License * along with this library; if not, write to the Free Software Foundation, * Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */package no.uib.cipr.matrix;import org.netlib.lapack.LAPACK;import org.netlib.util.intW;/** * Computes eigenvalues of symmetrical, dense matrices */public class SymmDenseEVD extends SymmEVD {    /**     * Double work array     */    private final double[] work;    /**     * Integer work array     */    private final int[] iwork;    /**     * Upper or lower part stored     */    private final UpLo uplo;    /**     * Range of eigenvalues to compute     */    private final JobEigRange range;    /**     * Eigenvector supports     */    private final int[] isuppz;    /**     * Tolerance criteria     */    private final double abstol;    /**     * Sets up an eigenvalue decomposition for symmetrical, dense matrices.     * Computes all eigenvalues and eigenvectors, and uses a low default     * tolerance criteria     *      * @param n     *            Size of the matrix     * @param upper     *            True if the upper part of the matrix is stored, and false if     *            the lower part of the matrix is stored instead     */    public SymmDenseEVD(int n, boolean upper) {        this(n, upper, true, LAPACK.getInstance().dlamch("Safe minimum"));    }    /**     * Sets up an eigenvalue decomposition for symmetrical, dense matrices.     * Computes all eigenvalues and eigenvectors     *      * @param n     *            Size of the matrix     * @param upper     *            True if the upper part of the matrix is stored, and false if     *            the lower part of the matrix is stored instead     * @param abstol     *            Absolute tolerance criteria     */    public SymmDenseEVD(int n, boolean upper, double abstol) {        this(n, upper, true, abstol);    }    /**     * Sets up an eigenvalue decomposition for symmetrical, dense matrices. Uses     * a low default tolerance criteria     *      * @param n     *            Size of the matrix     * @param upper     *            True if the upper part of the matrix is stored, and false if     *            the lower part of the matrix is stored instead     * @param vectors     *            True to compute the eigenvectors, false for just the     *            eigenvalues     */    public SymmDenseEVD(int n, boolean upper, boolean vectors) {        this(n, upper, vectors, LAPACK.getInstance().dlamch("Safe minimum"));    }    /**     * Sets up an eigenvalue decomposition for symmetrical, dense matrices     *      * @param n     *            Size of the matrix     * @param upper     *            True if the upper part of the matrix is stored, and false if     *            the lower part of the matrix is stored instead     * @param vectors     *            True to compute the eigenvectors, false for just the     *            eigenvalues     * @param abstol     *            Absolute tolerance criteria     */    public SymmDenseEVD(int n, boolean upper, boolean vectors, double abstol) {        super(n, vectors);        this.abstol = abstol;        uplo = upper ? UpLo.Upper : UpLo.Lower;        range = JobEigRange.All;        isuppz = new int[2 * Math.max(1, n)];        // Find the needed workspace        double[] worksize = new double[1];        int[] iworksize = new int[1];        intW info = new intW(0);        LAPACK.getInstance().dsyevr(job.netlib(), range.netlib(), uplo.netlib(), n,        	new double[0], Matrices.ld(n), 0, 0, 0, 0, abstol, new intW(1), new double[0], new double[0],        	Matrices.ld(n), isuppz, worksize, -1, iworksize, -1, info);        // Allocate workspace        int lwork = 0, liwork = 0;        if (info.val != 0) {            lwork = 26 * n;            liwork = 10 * n;        } else {            lwork = (int) worksize[0];            liwork = iworksize[0];        }        lwork = Math.max(1, lwork);        liwork = Math.max(1, liwork);        work = new double[lwork];        iwork = new int[liwork];    }    /**     * Convenience method for computing the full eigenvalue decomposition of the     * given matrix     *      * @param A     *            Matrix to factorize. Upper part extracted, and the matrix is     *            not modified     * @return Newly allocated decomposition     * @throws NotConvergedException     */    public static SymmDenseEVD factorize(Matrix A) throws NotConvergedException {        return new SymmDenseEVD(A.numRows(), true)                .factor(new UpperSymmDenseMatrix(A));    }    /**     * Computes the eigenvalue decomposition of the given matrix     *      * @param A     *            Matrix to factorize. Overwritten on return     * @return The current eigenvalue decomposition     * @throws NotConvergedException     */    public SymmDenseEVD factor(LowerSymmDenseMatrix A)            throws NotConvergedException {        if (uplo != UpLo.Lower)            throw new IllegalArgumentException(                    "Eigenvalue computer configured for lower-symmetrical matrices");        return factor(A, A.getData());    }    /**     * Computes the eigenvalue decomposition of the given matrix     *      * @param A     *            Matrix to factorize. Overwritten on return     * @return The current eigenvalue decomposition     * @throws NotConvergedException     */    public SymmDenseEVD factor(UpperSymmDenseMatrix A)            throws NotConvergedException {        if (uplo != UpLo.Upper)            throw new IllegalArgumentException(                    "Eigenvalue computer configured for upper-symmetrical matrices");        return factor(A, A.getData());    }    private SymmDenseEVD factor(Matrix A, double[] data)            throws NotConvergedException {        if (A.numRows() != n)            throw new IllegalArgumentException("A.numRows() != n");        intW info = new intW(0);        LAPACK.getInstance().dsyevr(job.netlib(), range.netlib(), uplo.netlib(), n, data,        	Matrices.ld(n), 0, 0, 0, 0, abstol, new intW(1), w,                job == JobEig.All ? Z.getData() : new double[0], Matrices.ld(n), isuppz, work,                work.length, iwork, iwork.length, info);        if (info.val > 0)            throw new NotConvergedException(                    NotConvergedException.Reason.Iterations);        else if (info.val < 0)            throw new IllegalArgumentException();        return this;    }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -