⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 matrix.java

📁 另一个功能更强大的矩阵运算软件开源代码
💻 JAVA
📖 第 1 页 / 共 2 页
字号:
/* * Copyright (C) 2003-2006 Bjørn-Ove Heimsund *  * This file is part of MTJ. *  * This library is free software; you can redistribute it and/or modify it * under the terms of the GNU Lesser General Public License as published by the * Free Software Foundation; either version 2.1 of the License, or (at your * option) any later version. *  * This library is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License * for more details. *  * You should have received a copy of the GNU Lesser General Public License * along with this library; if not, write to the Free Software Foundation, * Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */package no.uib.cipr.matrix;/** * Basic matrix interface. It holds <code>double</code>s in a rectangular 2D * array, and it is used alongside <code>Vector</code> in numerical * computations. Implementing classes decides on the actual storage. *  * <h4>Basic operations</h4> * <p> * Use <code>numRows</code> and <code>numColumns</code> to get the basic * size of a matrix. <code>get(int,int)</code> gets an element, and there are * corresponding <code>set(int,int,double)</code> and * <code>add(int,int,double)</code> methods as well. Note that matrix indices * are zero-based (typical for Java and C). This means that the row-indices * range from 0 to <code>numRows-1</code>, likewise for the columns. It is * legal to have <code>numRows</code> or <code>numColumns</code> equal zero. * </p> * <p> * Other basic operations are <code>zero</code> which zeros all the entries of * the matrix, which can be cheaper than either zeroing the matrix manually, or * creating a new matrix, and the operation <code>copy</code> which creates a * deep copy of the matrix. This copy has separate storage, but starts with the * same contents as the current matrix. * </p> *  * <h4>Iterators</h4> * <p> * The matrix interface extends <code>Iterable</code>, and the iterator * returns a <code>MatrixEntry</code> which contains current index and entry * value. Note that the iterator may skip non-zero entries. Using an iterator, * many simple and efficient algorithms can be created. The iterator also * permits changing values in the matrix, however only non-zero entries can be * changed. * </p> *  * <h4>Basic linear algebra</h4> * <p> * A large selection of basic linear algebra operations are available. To ensure * high efficiency, little or no internal memory allocation is done, and the * user is required to supply the output arguments. * </p> * <p> * The operations available include: * </p> * <dl> * <dt><i>Additions </i></dt> * <dd>Matrices can be added to each other, even if their underlying matrix * structures are different.</dd> * <dt><i>Multiplications </i></dt> * <dd>A matrix can be multiplied with vectors and other matrices. For * increased efficiency, a multiplication can be combined with addition and * scaling, and transpose matrix multiplications are also available.</dd> * <dt><i>Rank-updates </i></dt> * <dd>A matrix can be efficiently updated using low-rank updates. The updates * can be contained in both matrices or vectors.</dd> * <dt><i>Transpositions </i></dt> * <dd>In-place transpositions of square matrices is supported, and the * transpose of a matrix can be stored in another matrix of compatible size * (possibly non-rectangular)</dd> * <dt><i>Solvers </i></dt> * <dd>Many dense and structured sparse matrices have fast, direct solvers, and * can be used to solve linear systems without creating a factorization. These * solvers are typically backed by subroutines in LAPACK</dd> * </dl> */public interface Matrix extends Iterable<MatrixEntry> {    /**     * Number of rows in the matrix     */    int numRows();    /**     * Number of columns in the matrix     */    int numColumns();    /**     * Returns true if the matrix is square     */    boolean isSquare();    /**     * <code>A(row,column) = value</code>     */    void set(int row, int column, double value);    /**     * <code>A(row,column) += value</code>     */    void add(int row, int column, double value);    /**     * Returns <code>A(row,column)</code>     */    double get(int row, int column);    /**     * Creates a deep copy of the matrix     *      * @return A     */    Matrix copy();    /**     * Zeros all the entries in the matrix, while preserving any underlying     * structure. Useful for general, unstructured matrices.     *      * @return A     */    Matrix zero();    /**     * <code>y = A*x</code>     *      * @param x     *            Vector of size <code>A.numColumns()</code>     * @param y     *            Vector of size <code>A.numRows()</code>     * @return y     */    Vector mult(Vector x, Vector y);    /**     * <code>y = alpha*A*x</code>     *      * @param x     *            Vector of size <code>A.numColumns()</code>     * @param y     *            Vector of size <code>A.numRows()</code>     * @return y     */    Vector mult(double alpha, Vector x, Vector y);    /**     * <code>y = A*x + y</code>     *      * @param x     *            Vector of size <code>A.numColumns()</code>     * @param y     *            Vector of size <code>A.numRows()</code>     * @return y     */    Vector multAdd(Vector x, Vector y);    /**     * <code>y = alpha*A*x + y</code>     *      * @param x     *            Vector of size <code>A.numColumns()</code>     * @param y     *            Vector of size <code>A.numRows()</code>     * @return y     */    Vector multAdd(double alpha, Vector x, Vector y);    /**     * <code>y = A<sup>T</sup>*x</code>     *      * @param x     *            Vector of size <code>A.numRows()</code>     * @param y     *            Vector of size <code>A.numColumns()</code>     * @return y     */    Vector transMult(Vector x, Vector y);    /**     * <code>y = alpha*A<sup>T</sup>*x</code>     *      * @param x     *            Vector of size <code>A.numRows()</code>     * @param y     *            Vector of size <code>A.numColumns()</code>     * @return y     */    Vector transMult(double alpha, Vector x, Vector y);    /**     * <code>y = A<sup>T</sup>*x + y</code>     *      * @param x     *            Vector of size <code>A.numRows()</code>     * @param y     *            Vector of size <code>A.numColumns()</code>     * @return y     */    Vector transMultAdd(Vector x, Vector y);    /**     * <code>y = alpha*A<sup>T</sup>*x + y</code>     *      * @param x     *            Vector of size <code>A.numRows()</code>     * @param y     *            Vector of size <code>A.numColumns()</code>     * @return y     */    Vector transMultAdd(double alpha, Vector x, Vector y);    /**     * <code>x = A\b</code>. Not all matrices support this operation, those     * that do not throw <code>UnsupportedOperationException</code>. Note     * that it is often more efficient to use a matrix decomposition and its     * associated solver     *      * @param b     *            Vector of size <code>A.numRows()</code>     * @param x     *            Vector of size <code>A.numColumns()</code>     * @return x     * @throws MatrixSingularException     *             If the matrix is singular     * @throws MatrixNotSPDException     *             If the solver assumes that the matrix is symmetrical,     *             positive definite, but that that property does not hold     */    Vector solve(Vector b, Vector x) throws MatrixSingularException,            MatrixNotSPDException;    /**     * <code>x = A<sup>T</sup>\b</code>. Not all matrices support this     * operation, those that do not throw     * <code>UnsupportedOperationException</code>. Note that it is often more     * efficient to use a matrix decomposition and its associated solver     *      * @param b     *            Vector of size <code>A.numColumns()</code>     * @param x     *            Vector of size <code>A.numRows()</code>     * @return x     * @throws MatrixSingularException     *             If the matrix is singular     * @throws MatrixNotSPDException     *             If the solver assumes that the matrix is symmetrical,     *             positive definite, but that that property does not hold     */    Vector transSolve(Vector b, Vector x) throws MatrixSingularException,            MatrixNotSPDException;    /**     * <code>A = x*x<sup>T</sup> + A</code>. The matrix must be square, and     * the vector of the same length     *      * @return A     */    Matrix rank1(Vector x);    /**     * <code>A = alpha*x*x<sup>T</sup> + A</code>. The matrix must be     * square, and the vector of the same length     *      * @return A     */    Matrix rank1(double alpha, Vector x);    /**     * <code>A = x*y<sup>T</sup> + A</code>. The matrix must be square, and     * the vectors of the same length     *      * @return A     */    Matrix rank1(Vector x, Vector y);    /**     * <code>A = alpha*x*y<sup>T</sup> + A</code>. The matrix must be     * square, and the vectors of the same length     *      * @return A     */    Matrix rank1(double alpha, Vector x, Vector y);    /**     * <code>A = x*y<sup>T</sup> + y*x<sup>T</sup> + A</code>. The matrix     * must be square, and the vectors of the same length     *      * @return A     */    Matrix rank2(Vector x, Vector y);    /**     * <code>A = alpha*x*y<sup>T</sup> + alpha*y*x<sup>T</sup> + A</code>.     * The matrix must be square, and the vectors of the same length     *      * @return A     */    Matrix rank2(double alpha, Vector x, Vector y);    /**     * <code>C = A*B</code>     *      * @param B     *            Matrix such that <code>B.numRows() == A.numColumns()</code>     *            and <code>B.numColumns() == C.numColumns()</code>     * @param C     *            Matrix such that <code>C.numRows() == A.numRows()</code> and     *            <code>B.numColumns() == C.numColumns()</code>     * @return C     */    Matrix mult(Matrix B, Matrix C);    /**     * <code>C = alpha*A*B</code>     *      * @param B     *            Matrix such that <code>B.numRows() == A.numColumns()</code>     *            and <code>B.numColumns() == C.numColumns()</code>     * @param C     *            Matrix such that <code>C.numRows() == A.numRows()</code> and     *            <code>B.numColumns() == C.numColumns()</code>     * @return C     */    Matrix mult(double alpha, Matrix B, Matrix C);    /**     * <code>C = A*B + C</code>     *      * @param B     *            Matrix such that <code>B.numRows() == A.numColumns()</code>     *            and <code>B.numColumns() == C.numColumns()</code>     * @param C     *            Matrix such that <code>C.numRows() == A.numRows()</code> and     *            <code>B.numColumns() == C.numColumns()</code>     * @return C     */    Matrix multAdd(Matrix B, Matrix C);    /**     * <code>C = alpha*A*B + C</code>     *      * @param B     *            Matrix such that <code>B.numRows() == A.numColumns()</code>     *            and <code>B.numColumns() == C.numColumns()</code>     * @param C     *            Matrix such that <code>C.numRows() == A.numRows()</code> and     *            <code>B.numColumns() == C.numColumns()</code>     * @return C     */    Matrix multAdd(double alpha, Matrix B, Matrix C);    /**     * <code>C = A<sup>T</sup>*B</code>     *      * @param B     *            Matrix such that <code>B.numRows() == A.numRows()</code> and     *            <code>B.numColumns() == C.numColumns()</code>     * @param C     *            Matrix such that <code>C.numRows() == A.numColumns()</code>     *            and <code>B.numColumns() == C.numColumns()</code>     * @return C     */    Matrix transAmult(Matrix B, Matrix C);    /**     * <code>C = alpha*A<sup>T</sup>*B</code>     *      * @param B     *            Matrix such that <code>B.numRows() == A.numRows()</code> and

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -