⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 denselu.java

📁 另一个功能更强大的矩阵运算软件开源代码
💻 JAVA
字号:
/* * Copyright (C) 2003-2006 Bjørn-Ove Heimsund *  * This file is part of MTJ. *  * This library is free software; you can redistribute it and/or modify it * under the terms of the GNU Lesser General Public License as published by the * Free Software Foundation; either version 2.1 of the License, or (at your * option) any later version. *  * This library is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License * for more details. *  * You should have received a copy of the GNU Lesser General Public License * along with this library; if not, write to the Free Software Foundation, * Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */package no.uib.cipr.matrix;import no.uib.cipr.matrix.Matrix.Norm;import org.netlib.lapack.LAPACK;import org.netlib.util.doubleW;import org.netlib.util.intW;/** * Dense LU decomposition *  * FIXME: DenseLU is broken! Fix it */public class DenseLU {    /**     * Holds the LU factors     */    private DenseMatrix LU;    /**     * Row pivotations     */    private int[] piv;    /**     * True if the matrix was singular     */    private boolean singular;    /**     * Constructor for DenseLU     *      * @param m     *            Number of rows     * @param n     *            Number of columns     */    public DenseLU(int m, int n) {        LU = new DenseMatrix(m, n);        piv = new int[Math.min(m, n)];    }    /**     * Creates an LU decomposition of the given matrix     *      * @param A     *            Matrix to decompose. Not modified     * @return The current decomposition     */    public static DenseLU factorize(Matrix A) {        return new DenseLU(A.numRows(), A.numColumns()).factor(new DenseMatrix(                A));    }    /**     * Creates an LU decomposition of the given matrix     *      * @param A     *            Matrix to decompose. Overwritten with the decomposition     * @return The current decomposition     */    public DenseLU factor(DenseMatrix A) {        singular = false;        intW info = new intW(0);        LAPACK.getInstance().dgetrf(A.numRows(), A.numColumns(),                A.getData(), Matrices.ld(A.numRows()), piv, info);        if (info.val > 0)            singular = true;        else if (info.val < 0)            throw new IllegalArgumentException();        LU.set(A);        return this;    }    /**     * Returns the lower triangular factor     */    public UnitLowerTriangDenseMatrix getL() {        return new UnitLowerTriangDenseMatrix(LU, false);    }    /**     * Returns the upper triangular factor     */    public UpperTriangDenseMatrix getU() {        return new UpperTriangDenseMatrix(LU, false);    }    /**     * Returns the decomposition matrix     */    public DenseMatrix getLU() {        return LU;    }    /**     * Computes the reciprocal condition number, using either the infinity norm     * of the 1 norm.     *      * @param A     *            The matrix this is a decomposition of     * @param norm     *            Either <code>Norm.One</code> or <code>Norm.Infinity</code>     * @return The reciprocal condition number. Values close to unity indicate a     *         well-conditioned system, while numbers close to zero do not.     */    public double rcond(Matrix A, Norm norm) {        if (norm != Norm.One && norm != Norm.Infinity)            throw new IllegalArgumentException(                    "Only the 1 or the Infinity norms are supported");        double anorm = A.norm(norm);        int n = A.numRows();        intW info = new intW(0);        doubleW rcond = new doubleW(0);        LAPACK.getInstance().dgecon(norm.netlib(), n, LU.getData(), Matrices.ld(n), anorm,                rcond, new double[4 * n], new int[n], info);        if (info.val < 0)            throw new IllegalArgumentException();        return rcond.val;    }    /**     * Returns the row pivots     */    public int[] getPivots() {        return piv;    }    /**     * Checks for singularity     */    public boolean isSingular() {        return singular;    }    /**     * Computes <code>A\B</code>, overwriting <code>B</code>     */    public DenseMatrix solve(DenseMatrix B) throws MatrixSingularException {        return solve(B, Transpose.NoTranspose);    }    /**     * Computes <code>A<sup>T</sup>\B</code>, overwriting <code>B</code>     */    public DenseMatrix transSolve(DenseMatrix B) throws MatrixSingularException {        return solve(B, Transpose.Transpose);    }    private DenseMatrix solve(DenseMatrix B, Transpose trans)            throws MatrixSingularException {        if (singular)            throw new MatrixSingularException();        if (B.numRows() != LU.numRows())            throw new IllegalArgumentException("B.numRows() != LU.numRows()");        intW info = new intW(0);        LAPACK.getInstance().dgetrs(trans.netlib(), LU.numRows(),                B.numColumns(), LU.getData(), Matrices.ld(LU.numRows()),                piv, B.getData(), Matrices.ld(LU.numRows()), info);        if (info.val < 0)            throw new IllegalArgumentException();        return B;    }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -