📄 denselutest.java
字号:
/* * Copyright (C) 2003-2006 Bjørn-Ove Heimsund * * This file is part of MTJ. * * This library is free software; you can redistribute it and/or modify it * under the terms of the GNU Lesser General Public License as published by the * Free Software Foundation; either version 2.1 of the License, or (at your * option) any later version. * * This library is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License * for more details. * * You should have received a copy of the GNU Lesser General Public License * along with this library; if not, write to the Free Software Foundation, * Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */package no.uib.cipr.matrix;import no.uib.cipr.matrix.DenseLU;import no.uib.cipr.matrix.DenseMatrix;import no.uib.cipr.matrix.Matrices;import no.uib.cipr.matrix.Matrix;import no.uib.cipr.matrix.MatrixEntry;import junit.framework.TestCase;/** * Tests the dense LU decomposition */public class DenseLUTest extends TestCase { /** * Matrix to decompose */ private DenseMatrix A; private DenseMatrix I; private final int max = 100; public DenseLUTest(String arg0) { super(arg0); } @Override protected void setUp() throws Exception { int n = Utilities.getInt(1, max); A = new DenseMatrix(n, n); Utilities.populate(A); Utilities.addDiagonal(A, 1); while (Utilities.singular(A)) Utilities.addDiagonal(A, 1); I = Matrices.identity(n); } @Override protected void tearDown() throws Exception { A = null; I = null; } public void testDenseLU() { int n = A.numRows(); DenseLU lu = new DenseLU(n, n); lu.factor(A.copy()); lu.solve(I); Matrix J = I.mult(A, new DenseMatrix(n, n)); for (int i = 0; i < n; ++i) for (int j = 0; j < n; ++j) if (i != j) assertEquals(J.get(i, j), 0, 1e-10); else assertEquals(J.get(i, j), 1, 1e-10); } public void testDenseLUtranspose() { int n = A.numRows(); DenseLU lu = new DenseLU(n, n); lu.factor(A.copy()); lu.transSolve(I); Matrix J = I.transAmult(A, new DenseMatrix(n, n)); for (int i = 0; i < n; ++i) for (int j = 0; j < n; ++j) if (i != j) assertEquals(J.get(i, j), 0, 1e-10); else assertEquals(J.get(i, j), 1, 1e-10); } public void testDenseLUrcond() { int n = A.numRows(); DenseLU lu = new DenseLU(n, n); lu.factor(A.copy()); lu.rcond(A, Matrix.Norm.One); lu.rcond(A, Matrix.Norm.Infinity); } public void testDenseLUToInput() { // MTJ bug in DenseLU code Matrix m = new DenseMatrix(3, 3); // -2 2 -3 // -1 1 3 // 2 0 -1 m.set(0, 0, -2); m.set(0, 1, 2); m.set(0, 2, -3); m.set(1, 0, -1); m.set(1, 1, 1); m.set(1, 2, 3); m.set(2, 0, 2); m.set(2, 1, 0); m.set(2, 2, -1); // SHOULD BE: // L: // 1.000 0.000 0.000 // -1.000 1.000 0.000 // 0.500 0.000 1.000 // // U: // -2.000 2.000 -3.000 // 0.000 2.000 -4.000 // 0.000 0.000 4.500 // // Permutation matrix: // 1.000 0.000 0.000 // 0.000 0.000 1.000 // 0.000 1.000 0.000 DenseLU dlu = DenseLU.factorize(m); // check that m = L . U Matrix lTimesU = new DenseMatrix(3, 3); dlu.getL().mult(dlu.getU(), lTimesU); int[] pivots = dlu.getPivots(); for (MatrixEntry entry : m) { int row = entry.row(); int col = entry.column(); double val = entry.get(); double valLU = pivots[row] * lTimesU.get(row, col); assert val == valLU : "Row " + row + ", Col " + col + " wasn't equal! " + val + " " + valLU; } Matrix lu = dlu.getLU(); // m == lu for (MatrixEntry entry : m) { int row = entry.row(); int col = entry.column(); double val = entry.get(); double valLU = lu.get(row, col); assert val == valLU : "Row " + row + ", Col " + col + " wasn't equal! " + val + " " + valLU; } }}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -