⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 trajectorydeterminationproblem.java

📁 矩阵运算
💻 JAVA
字号:
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements.  See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License.  You may obtain a copy of the License at * *      http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */import org.apache.commons.math.estimation.EstimationException;import org.apache.commons.math.estimation.EstimatedParameter;import org.apache.commons.math.estimation.EstimationProblem;import org.apache.commons.math.estimation.LevenbergMarquardtEstimator;import org.apache.commons.math.estimation.SimpleEstimationProblem;import org.apache.commons.math.estimation.WeightedMeasurement;public class TrajectoryDeterminationProblem extends SimpleEstimationProblem {    public static void main(String[] args) {        try {            TrajectoryDeterminationProblem problem =              new TrajectoryDeterminationProblem(0.0, 100.0, 800.0, 1.0, 0.0);            double[][] distances = {                    {   0.0, 806.5849 }, {  20.0, 796.8148 }, {  40.0, 791.0833 }, {  60.0, 789.6712 },                    {  80.0, 793.1334 }, { 100.0, 797.7248 }, { 120.0, 803.2785 }, { 140.0, 813.4939 },                    { 160.0, 826.9295 }, { 180.0, 844.0640 }, { 200.0, 863.3829 }, { 220.0, 883.3143 },                    { 240.0, 908.6867 }, { 260.0, 934.8561 }, { 280.0, 964.0730 }, { 300.0, 992.1033 },                    { 320.0, 1023.998 }, { 340.0, 1057.439 }, { 360.0, 1091.912 }, { 380.0, 1125.968 },                    { 400.0, 1162.789 }, { 420.0, 1201.517 }, { 440.0, 1239.176 }, { 460.0, 1279.347 } };            for (int i = 0; i < distances.length; ++i) {                problem.addDistanceMeasurement(1.0,  distances[i][0], distances[i][1]);            };            double[][] angles = {                    { 10.0, 1.415423 }, { 30.0, 1.352643 }, { 50.0, 1.289290 }, { 70.0, 1.225249 },                    { 90.0, 1.161203 }, {110.0, 1.098538 }, {130.0, 1.036263 }, {150.0, 0.976052 },                    {170.0, 0.917921 }, {190.0, 0.861830 }, {210.0, 0.808237 }, {230.0, 0.757043 },                    {250.0, 0.708650 }, {270.0, 0.662949 }, {290.0, 0.619903 }, {310.0, 0.579160 },                    {330.0, 0.541033 }, {350.0, 0.505590 }, {370.0, 0.471746 }, {390.0, 0.440155 },                    {410.0, 0.410522 }, {430.0, 0.382701 }, {450.0, 0.356957 }, {470.0, 0.332400 } };            for (int i = 0; i < angles.length; ++i) {                problem.addAngularMeasurement(3.0e7, angles[i][0], angles[i][1]);            };            LevenbergMarquardtEstimator estimator = new LevenbergMarquardtEstimator();            estimator.estimate(problem);            System.out.println("initial position: " + problem.getX0() + " " + problem.getY0());            System.out.println("velocity: " + problem.getVx0() + " " + problem.getVy0());        } catch (EstimationException ee) {          System.err.println(ee.getMessage());        }    }    public TrajectoryDeterminationProblem(double t0,                                          double  x0Guess, double  y0Guess,                                          double vx0Guess, double vy0Guess) {        this.t0 = t0;         x0 = new EstimatedParameter( "x0",  x0Guess);         y0 = new EstimatedParameter( "y0",  y0Guess);        vx0 = new EstimatedParameter("vx0", vx0Guess);        vy0 = new EstimatedParameter("vy0", vy0Guess);        // inform the base class about the parameters        addParameter(x0);        addParameter(y0);        addParameter(vx0);        addParameter(vy0);    }    public double getX0() {        return x0.getEstimate();    }    public double getY0() {        return y0.getEstimate();    }    public double getVx0() {        return vx0.getEstimate();    }    public double getVy0() {        return vy0.getEstimate();    }    public void addAngularMeasurement(double wi, double ti, double ai) {        // let the base class handle the measurement        addMeasurement(new AngularMeasurement(wi, ti, ai));    }    public void addDistanceMeasurement(double wi, double ti, double di) {        // let the base class handle the measurement        addMeasurement(new DistanceMeasurement(wi, ti, di));    }    public double x(double t) {        return x0.getEstimate() + (t - t0) * vx0.getEstimate();    }    public double y(double t) {        return y0.getEstimate() + (t - t0) * vy0.getEstimate();    }    private class AngularMeasurement extends WeightedMeasurement {        public AngularMeasurement(double weight, double t, double angle) {            super(weight, angle);            this.t = t;        }        public double getTheoreticalValue() {            return Math.atan2(y(t), x(t));        }        public double getPartial(EstimatedParameter parameter) {            double xt = x(t);            double yt = y(t);            double r  = Math.sqrt(xt * xt + yt * yt);            double u  = yt / (r + xt);            double c  = 2 * u / (1 + u * u);            if (parameter == x0) {                return -c;            } else if (parameter == vx0) {                return -c * t;            } else if (parameter == y0) {                return c * xt / yt;            } else {                return c * t * xt / yt;            }        }        private final double t;        private static final long serialVersionUID = -5990040582592763282L;    }    private class DistanceMeasurement extends WeightedMeasurement {        public DistanceMeasurement(double weight, double t, double angle) {            super(weight, angle);            this.t = t;        }        public double getTheoreticalValue() {            double xt = x(t);            double yt = y(t);            return Math.sqrt(xt * xt + yt * yt);        }        public double getPartial(EstimatedParameter parameter) {            double xt = x(t);            double yt = y(t);            double r  = Math.sqrt(xt * xt + yt * yt);            if (parameter == x0) {                return xt / r;            } else if (parameter == vx0) {                return xt * t / r;            } else if (parameter == y0) {                return yt / r;            } else {                return yt * t / r;            }        }        private final double t;        private static final long serialVersionUID = 3257286197740459503L;    }    private double t0;    private EstimatedParameter x0;    private EstimatedParameter y0;    private EstimatedParameter vx0;    private EstimatedParameter vy0;}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -