📄 logistic_regression.m
字号:
## Copyright (C) 1995, 1996, 1997, 1998, 1999, 2000, 2002, 2005, 2007## Kurt Hornik#### This file is part of Octave.#### Octave is free software; you can redistribute it and/or modify it## under the terms of the GNU General Public License as published by## the Free Software Foundation; either version 3 of the License, or (at## your option) any later version.#### Octave is distributed in the hope that it will be useful, but## WITHOUT ANY WARRANTY; without even the implied warranty of## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU## General Public License for more details.#### You should have received a copy of the GNU General Public License## along with Octave; see the file COPYING. If not, see## <http://www.gnu.org/licenses/>.## -*- texinfo -*-## @deftypefn {Function File} {[@var{theta}, @var{beta}, @var{dev}, @var{dl}, @var{d2l}, @var{p}] =} logistic_regression (@var{y}, @var{x}, @var{print}, @var{theta}, @var{beta})## Perform ordinal logistic regression.#### Suppose @var{y} takes values in @var{k} ordered categories, and let## @code{gamma_i (@var{x})} be the cumulative probability that @var{y}## falls in one of the first @var{i} categories given the covariate## @var{x}. Then#### @example## [theta, beta] = logistic_regression (y, x)## @end example#### @noindent## fits the model#### @example## logit (gamma_i (x)) = theta_i - beta' * x, i = 1...k-1## @end example#### The number of ordinal categories, @var{k}, is taken to be the number## of distinct values of @code{round (@var{y})}. If @var{k} equals 2,## @var{y} is binary and the model is ordinary logistic regression. The## matrix @var{x} is assumed to have full column rank.#### Given @var{y} only, @code{theta = logistic_regression (y)}## fits the model with baseline logit odds only.#### The full form is#### @example## [theta, beta, dev, dl, d2l, gamma]## = logistic_regression (y, x, print, theta, beta)## @end example#### @noindent## in which all output arguments and all input arguments except @var{y}## are optional.#### Setting @var{print} to 1 requests summary information about the fitted## model to be displayed. Setting @var{print} to 2 requests information## about convergence at each iteration. Other values request no## information to be displayed. The input arguments @var{theta} and## @var{beta} give initial estimates for @var{theta} and @var{beta}.#### The returned value @var{dev} holds minus twice the log-likelihood.#### The returned values @var{dl} and @var{d2l} are the vector of first## and the matrix of second derivatives of the log-likelihood with## respect to @var{theta} and @var{beta}.#### @var{p} holds estimates for the conditional distribution of @var{y}## given @var{x}.## @end deftypefn## Original for MATLAB written by Gordon K Smyth <gks@maths.uq.oz.au>,## U of Queensland, Australia, on Nov 19, 1990. Last revision Aug 3,## 1992.## Author: Gordon K Smyth <gks@maths.uq.oz.au>,## Adapted-By: KH <Kurt.Hornik@wu-wien.ac.at>## Description: Ordinal logistic regression## Uses the auxiliary functions logistic_regression_derivatives and## logistic_regression_likelihood.function [theta, beta, dev, dl, d2l, p] ... = logistic_regression (y, x, print, theta, beta) ## check input y = round (vec (y)); [my, ny] = size (y); if (nargin < 2) x = zeros (my, 0); endif; [mx, nx] = size (x); if (mx != my) error ("x and y must have the same number of observations"); endif ## initial calculations x = -x; tol = 1e-6; incr = 10; decr = 2; ymin = min (y); ymax = max (y); yrange = ymax - ymin; z = (y * ones (1, yrange)) == ((y * 0 + 1) * (ymin : (ymax - 1))); z1 = (y * ones (1, yrange)) == ((y * 0 + 1) * ((ymin + 1) : ymax)); z = z(:, any (z)); z1 = z1 (:, any(z1)); [mz, nz] = size (z); ## starting values if (nargin < 3) print = 0; endif; if (nargin < 4) beta = zeros (nx, 1); endif; if (nargin < 5) g = cumsum (sum (z))' ./ my; theta = log (g ./ (1 - g)); endif; tb = [theta; beta]; ## likelihood and derivatives at starting values [g, g1, p, dev] = logistic_regression_likelihood (y, x, tb, z, z1); [dl, d2l] = logistic_regression_derivatives (x, z, z1, g, g1, p); epsilon = std (vec (d2l)) / 1000; ## maximize likelihood using Levenberg modified Newton's method iter = 0; while (abs (dl' * (d2l \ dl) / length (dl)) > tol) iter = iter + 1; tbold = tb; devold = dev; tb = tbold - d2l \ dl; [g, g1, p, dev] = logistic_regression_likelihood (y, x, tb, z, z1); if ((dev - devold) / (dl' * (tb - tbold)) < 0) epsilon = epsilon / decr; else while ((dev - devold) / (dl' * (tb - tbold)) > 0) epsilon = epsilon * incr; if (epsilon > 1e+15) error ("epsilon too large"); endif tb = tbold - (d2l - epsilon * eye (size (d2l))) \ dl; [g, g1, p, dev] = logistic_regression_likelihood (y, x, tb, z, z1); disp ("epsilon"); disp (epsilon); endwhile endif [dl, d2l] = logistic_regression_derivatives (x, z, z1, g, g1, p); if (print == 2) disp ("Iteration"); disp (iter); disp ("Deviance"); disp (dev); disp ("First derivative"); disp (dl'); disp ("Eigenvalues of second derivative"); disp (eig (d2l)'); endif endwhile ## tidy up output theta = tb (1 : nz, 1); beta = tb ((nz + 1) : (nz + nx), 1); if (print >= 1) printf ("\n"); printf ("Logistic Regression Results:\n"); printf ("\n"); printf ("Number of Iterations: %d\n", iter); printf ("Deviance: %f\n", dev); printf ("Parameter Estimates:\n"); printf (" Theta S.E.\n"); se = sqrt (diag (inv (-d2l))); for i = 1 : nz printf (" %8.4f %8.4f\n", tb (i), se (i)); endfor if (nx > 0) printf (" Beta S.E.\n"); for i = (nz + 1) : (nz + nx) printf (" %8.4f %8.4f\n", tb (i), se (i)); endfor endif endif if (nargout == 6) if (nx > 0) e = ((x * beta) * ones (1, nz)) + ((y * 0 + 1) * theta'); else e = (y * 0 + 1) * theta'; endif gamma = diff ([(y * 0), (exp (e) ./ (1 + exp (e))), (y * 0 + 1)]')'; endifendfunction
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -