📄 tinv.m
字号:
## Copyright (C) 1995, 1996, 1997, 2005, 2006, 2007 Kurt Hornik#### This file is part of Octave.#### Octave is free software; you can redistribute it and/or modify it## under the terms of the GNU General Public License as published by## the Free Software Foundation; either version 3 of the License, or (at## your option) any later version.#### Octave is distributed in the hope that it will be useful, but## WITHOUT ANY WARRANTY; without even the implied warranty of## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU## General Public License for more details.#### You should have received a copy of the GNU General Public License## along with Octave; see the file COPYING. If not, see## <http://www.gnu.org/licenses/>.## -*- texinfo -*-## @deftypefn {Function File} {} tinv (@var{x}, @var{n})## For each probability value @var{x}, compute the the inverse of the## cumulative distribution function (CDF) of the t (Student)## distribution with degrees of freedom @var{n}. This function is## analagous to looking in a table for the t-value of a single-tailed## distribution.## @end deftypefn## For very large n, the "correct" formula does not really work well,## and the quantiles of the standard normal distribution are used## directly.## Author: KH <Kurt.Hornik@wu-wien.ac.at>## Description: Quantile function of the t distributionfunction inv = tinv (x, n) if (nargin != 2) print_usage (); endif if (!isscalar (n)) [retval, x, n] = common_size (x, n); if (retval > 0) error ("tinv: x and n must be of common size or scalar"); endif endif inv = zeros (size (x)); k = find ((x < 0) | (x > 1) | isnan (x) | !(n > 0)); if (any (k)) inv(k) = NaN; endif k = find ((x == 0) & (n > 0)); if (any (k)) inv(k) = -Inf; endif k = find ((x == 1) & (n > 0)); if (any (k)) inv(k) = Inf; endif k = find ((x > 0) & (x < 1) & (n > 0) & (n < 10000)); if (any (k)) if (isscalar (n)) inv(k) = (sign (x(k) - 1/2) .* sqrt (n .* (1 ./ betainv (2*min (x(k), 1 - x(k)), n/2, 1/2) - 1))); else inv(k) = (sign (x(k) - 1/2) .* sqrt (n(k) .* (1 ./ betainv (2*min (x(k), 1 - x(k)), n(k)/2, 1/2) - 1))); endif endif ## For large n, use the quantiles of the standard normal k = find ((x > 0) & (x < 1) & (n >= 10000)); if (any (k)) inv(k) = stdnormal_inv (x(k)); endifendfunction
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -