⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 finv.m

📁 similer program for matlab
💻 M
字号:
## Copyright (C) 1995, 1996, 1997, 2005, 2006, 2007 Kurt Hornik#### This file is part of Octave.#### Octave is free software; you can redistribute it and/or modify it## under the terms of the GNU General Public License as published by## the Free Software Foundation; either version 3 of the License, or (at## your option) any later version.#### Octave is distributed in the hope that it will be useful, but## WITHOUT ANY WARRANTY; without even the implied warranty of## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU## General Public License for more details.#### You should have received a copy of the GNU General Public License## along with Octave; see the file COPYING.  If not, see## <http://www.gnu.org/licenses/>.## -*- texinfo -*-## @deftypefn {Function File} {} finv (@var{x}, @var{m}, @var{n})## For each component of @var{x}, compute the quantile (the inverse of## the CDF) at @var{x} of the F distribution with parameters @var{m} and## @var{n}.## @end deftypefn## Author: KH <Kurt.Hornik@wu-wien.ac.at>## Description: Quantile function of the F distributionfunction inv = finv (x, m, n)  if (nargin != 3)    print_usage ();  endif  if (!isscalar (m) || !isscalar (n))    [retval, x, m, n] = common_size (x, m, n);    if (retval > 0)      error ("finv: x, m and n must be of common size or scalar");    endif  endif  sz = size (x);  inv = zeros (sz);  k = find ((x < 0) | (x > 1) | isnan (x) | !(m > 0) | !(n > 0));  if (any (k))    inv(k) = NaN;  endif  k = find ((x == 1) & (m > 0) & (n > 0));  if (any (k))    inv(k) = Inf;  endif  k = find ((x > 0) & (x < 1) & (m > 0) & (n > 0));  if (any (k))    if (isscalar (m) && isscalar (n))      inv(k) = ((1 ./ betainv (1 - x(k), n / 2, m / 2) - 1) .* n ./ m);    else      inv(k) = ((1 ./ betainv (1 - x(k), n(k) / 2, m(k) / 2) - 1)		.* n(k) ./ m(k));    endif  endifendfunction

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -