⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 t_test_regression.m

📁 similer program for matlab
💻 M
字号:
## Copyright (C) 1995, 1996, 1997, 1998, 1999, 2000, 2002, 2005, 2006,##               2007 Kurt Hornik#### This file is part of Octave.#### Octave is free software; you can redistribute it and/or modify it## under the terms of the GNU General Public License as published by## the Free Software Foundation; either version 3 of the License, or (at## your option) any later version.#### Octave is distributed in the hope that it will be useful, but## WITHOUT ANY WARRANTY; without even the implied warranty of## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU## General Public License for more details.#### You should have received a copy of the GNU General Public License## along with Octave; see the file COPYING.  If not, see## <http://www.gnu.org/licenses/>.## -*- texinfo -*-## @deftypefn {Function File} {[@var{pval}, @var{t}, @var{df}] =} t_test_regression (@var{y}, @var{x}, @var{rr}, @var{r}, @var{alt})## Perform an t test for the null hypothesis @code{@var{rr} * @var{b} =## @var{r}} in a classical normal regression model @code{@var{y} =## @var{x} * @var{b} + @var{e}}.  Under the null, the test statistic @var{t}## follows a @var{t} distribution with @var{df} degrees of freedom.#### If @var{r} is omitted, a value of 0 is assumed.#### With the optional argument string @var{alt}, the alternative of## interest can be selected.  If @var{alt} is @code{"!="} or## @code{"<>"}, the null is tested against the two-sided alternative## @code{@var{rr} * @var{b} != @var{r}}.  If @var{alt} is @code{">"}, the## one-sided alternative @code{@var{rr} * @var{b} > @var{r}} is used.## Similarly for @var{"<"}, the one-sided alternative @code{@var{rr} *## @var{b} < @var{r}} is used.  The default is the two-sided case. #### The p-value of the test is returned in @var{pval}.#### If no output argument is given, the p-value of the test is displayed.## @end deftypefn## Author: KH <Kurt.Hornik@wu-wien.ac.at>## Description: Test one linear hypothesis in linear regression modelfunction [pval, t, df] = t_test_regression (y, X, R, r, alt)  if (nargin == 3)    r   = 0;    alt = "!=";  elseif (nargin == 4)    if (ischar (r))      alt = r;      r   = 0;    else      alt = "!=";    endif  elseif (! (nargin == 5))    print_usage ();  endif  if (! isscalar (r))    error ("t_test_regression: r must be a scalar");  elseif (! ischar (alt))    error ("t_test_regression: alt must be a string");  endif  [T, k] = size (X);  if (! (isvector (y) && (length (y) == T)))    error ("t_test_regression: y must be a vector of length rows (X)");  endif  s      = size (R);  if (! ((max (s) == k) && (min (s) == 1)))    error ("t_test_regression: R must be a vector of length columns (X)");  endif  R      = reshape (R, 1, k);  y      = reshape (y, T, 1);  [b, v] = ols (y, X);  df     = T - k;  t      = (R * b - r) / sqrt (v * R * inv (X' * X) * R');  cdf    = t_cdf (t, df);  if (strcmp (alt, "!=") || strcmp (alt, "<>"))    pval = 2 * min (cdf, 1 - cdf);  elseif strcmp (alt, ">")    pval = 1 - cdf;  elseif strcmp (alt, "<")    pval = cdf;  else    error ("t_test_regression: the value `%s' for alt is not possible", alt);  endif  if (nargout == 0)    printf ("pval: %g\n", pval);  endifendfunction

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -