📄 d2c.m
字号:
## Copyright (C) 1996, 1998, 2000, 2002, 2004, 2005, 2006, 2007## Auburn University. All rights reserved.#### This file is part of Octave.#### Octave is free software; you can redistribute it and/or modify it## under the terms of the GNU General Public License as published by## the Free Software Foundation; either version 3 of the License, or (at## your option) any later version.#### Octave is distributed in the hope that it will be useful, but## WITHOUT ANY WARRANTY; without even the implied warranty of## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU## General Public License for more details.#### You should have received a copy of the GNU General Public License## along with Octave; see the file COPYING. If not, see## <http://www.gnu.org/licenses/>.## -*- texinfo -*-## @deftypefn {Function File} {} d2c (@var{sys}, @var{tol})## @deftypefnx {Function File} {} d2c (@var{sys}, @var{opt})## Convert a discrete (sub)system into a purely continuous one. ## The sampling time used is @code{sysgettsam(@var{sys})}.#### @strong{Inputs}## @table @var## @item sys## system data structure with discrete components## @item tol## Scalar value.## Tolerance for convergence of default @code{"log"} option (see below)## @item opt## conversion option. Choose from:## @table @code## @item "log"## (default) Conversion is performed via a matrix logarithm.## Due to some problems with this computation, it is## followed by a steepest descent algorithm to identify continuous time## @var{a}, @var{b}, to get a better fit to the original data.#### If called as @code{d2c (@var{sys}, @var{tol})}, with @var{tol}## positive scalar, the @code{"log"} option is used. The default value## for @var{tol} is @code{1e-8}.## @item "bi"## Conversion is performed via bilinear transform## @math{z = (1 + s T / 2)/(1 - s T / 2)} where @math{T} is the## system sampling time (see @code{sysgettsam}).#### FIXME: bilinear option exits with an error if @var{sys} is not purely## discrete## @end table## @end table## @strong{Output}## @table @var## @item csys ## continuous time system (same dimensions and signal names as in @var{sys}).## @end table## @end deftypefn## Author: R. Bruce Tenison <btenison@eng.auburn.edu>## Created: August 23, 1994## Updated by John Ingram for system data structure August 1996function csys = d2c (sys, opt) ## SYS_INTERNAL accesses members of system data structure if (nargin != 1 && nargin != 2) print_usage (); elseif (! isstruct (sys)) error ("sys must be in system data structure"); elseif (nargin == 1) opt = "log"; tol = 1e-12; elseif (ischar (opt)) # all remaining cases are for nargin == 2 tol = 1e-12; if (! (strcmp (opt, "log") || strcmp (opt, "bi"))) error ("d2c: invalid opt passed=%s", opt); endif elseif (! is_sample (opt)) error ("tol must be a positive scalar") elseif (opt > 1e-2) warning ("d2c: ridiculous error tolerance passed=%g, intended c2d call?", opt); else tol = opt; opt = "log"; endif T = sysgettsam (sys); if (strcmp (opt, "bi")) ## bilinear transform ## convert with bilinear transform if (! is_digital (sys) ) error ("d2c requires a discrete time system for input") endif [a, b, c, d, tsam, n, nz, stname, inname, outname, yd] = sys2ss (sys); poles = eig (a); if (find (abs (poles-1) < 200*(n+nz)*eps)) warning ("d2c: some poles very close to one. May get bad results."); endif I = eye (size (a)); tk = 2 / sqrt (T); A = (2/T)*(a-I)/(a+I); iab = (I+a)\b; B = tk*iab; C = tk*(c/(I+a)); D = d- (c*iab); stnamec = strappend (stname, "_c"); csys = ss (A, B, C, D, 0, rows (A), 0, stnamec, inname, outname); elseif (strcmp (opt, "log")) sys = sysupdate (sys, "ss"); [n, nz, m, p] = sysdimensions (sys); if (nz == 0) warning ("d2c: all states continuous; setting outputs to agree"); csys = syssetsignals (sys, "yd", zeros (1, 1:p)); return; elseif (n != 0) warning ("d2c: n=%d > 0; performing c2d first", n); sys = c2d (sys, T); endif [a, b] = sys2ss (sys); [ma, na] = size (a); [mb, nb] = size (b); if (isempty (b)) warning ("d2c: empty b matrix"); Amat = a; else Amat = [a, b; zeros(nb,na), eye(nb)]; endif poles = eig (a); if (find (abs (poles) < 200*(n+nz)*eps)) warning ("d2c: some poles very close to zero. logm not performed"); Mtop = zeros (ma, na+nb); elseif (find (abs (poles-1) < 200*(n+nz)*eps)) warning ("d2c: some poles very close to one. May get bad results."); logmat = real (logm (Amat) / T); Mtop = logmat(1:na,:); else logmat = real (logm (Amat) / T); Mtop = logmat(1:na,:); endif ## perform simplistic, stupid optimization approach. ## should re-write with a Davidson-Fletcher CG approach mxthresh = norm (Mtop); if (mxthresh == 0) mxthresh = 1; endif eps1 = mxthresh; #gradient descent step size cnt = max (20, (n*nz)*4); #max number of iterations newgrad=1; #signal for new gradient while ((eps1/mxthresh > tol) && cnt) cnt--; ## calculate the gradient of error with respect to Amat... geps = norm (Mtop) * 1e-8; if (geps == 0) geps = 1e-8; endif DMtop = Mtop; if (isempty (b)) Mall = Mtop; DMall = DMtop; else Mall = [Mtop; zeros(nb,na+nb)]; DMall = [DMtop; zeros(nb,na+nb) ]; endif if (newgrad) GrMall = zeros (size (Mall)); for ii = 1:rows(Mtop) for jj = 1:columns(Mtop) DMall(ii,jj) = Mall(ii,jj) + geps; GrMall(ii,jj) = norm (Amat - expm (DMall*T), "fro") ... - norm (Amat - expm (Mall*T), "fro"); DMall(ii,jj) = Mall(ii,jj); endfor endfor GrMall = GrMall/norm(GrMall,1); newgrad = 0; endif ## got a gradient, now try to use it DMall = Mall-eps1*GrMall; FMall = expm (Mall*T); FDMall = expm (DMall*T); FmallErr = norm (Amat - FMall); FdmallErr = norm (Amat - FDMall); if (FdmallErr < FmallErr) Mtop = DMall(1:na,:); eps1 = min (eps1*2, 1e12); newgrad = 1; else eps1 = eps1/2; endif if (FmallErr == 0) eps1 = 0; endif endwhile [aa, bb, cc, dd, tsam, nn, nz, stnam, innam, outnam, yd] = sys2ss (sys); aa = Mall(1:na,1:na); if (! isempty (b)) bb = Mall(1:na,(na+1):(na+nb)); endif csys = ss (aa, bb, cc, dd, 0, na, 0, stnam, innam, outnam); ## update names nn = sysdimensions (sys); for ii = (nn+1):na strval = sprintf ("%s_c", sysgetsignals (csys, "st", ii, 1)); csys = syssetsignals (csys, "st", strval, ii); endfor endifendfunction
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -