📄 hinfnorm.m
字号:
## Copyright (C) 1996, 1998, 2000, 2002, 2004, 2005, 2006, 2007## Auburn University. All rights reserved.#### This file is part of Octave.#### Octave is free software; you can redistribute it and/or modify it## under the terms of the GNU General Public License as published by## the Free Software Foundation; either version 3 of the License, or (at## your option) any later version.#### Octave is distributed in the hope that it will be useful, but## WITHOUT ANY WARRANTY; without even the implied warranty of## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU## General Public License for more details.#### You should have received a copy of the GNU General Public License## along with Octave; see the file COPYING. If not, see## <http://www.gnu.org/licenses/>.## -*- texinfo -*-## @deftypefn {Function File} {[@var{g}, @var{gmin}, @var{gmax}] =} hinfnorm (@var{sys}, @var{tol}, @var{gmin}, @var{gmax}, @var{ptol})## Computes the ## @iftex## @tex## $ { \cal H }_\infty $## @end tex## @end iftex## @ifinfo## H-infinity## @end ifinfo## norm of a system data structure.#### @strong{Inputs}## @table @var## @item sys## system data structure## @item tol## @iftex## @tex## $ { \cal H }_\infty $## @end tex## @end iftex## @ifinfo## H-infinity## @end ifinfo## norm search tolerance (default: 0.001)## @item gmin## minimum value for norm search (default: 1e-9)## @item gmax## maximum value for norm search (default: 1e+9)## @item ptol## pole tolerance:## @itemize @bullet## @item if sys is continuous, poles with## @iftex## @tex## $ \vert {\rm real}(pole) \vert < ptol \Vert H \Vert $## @end tex## @end iftex## @ifinfo## @math{ |real(pole))| < ptol*||H|| }## @end ifinfo## (@var{H} is appropriate Hamiltonian)## are considered to be on the imaginary axis.#### @item if sys is discrete, poles with## @iftex## @tex## $ \vert { \rm pole } - 1 \vert < ptol \Vert [ s_1 s_2 ] \Vert $## @end tex## @end iftex## @ifinfo## @math{|abs(pole)-1| < ptol*||[s1,s2]||}## @end ifinfo## (appropriate symplectic pencil)## are considered to be on the unit circle.#### @item Default value: 1e-9## @end itemize## @end table#### @strong{Outputs}## @table @var## @item g## Computed gain, within @var{tol} of actual gain. @var{g} is returned as Inf## if the system is unstable.## @item gmin## @itemx gmax## Actual system gain lies in the interval [@var{gmin}, @var{gmax}].## @end table#### References:## Doyle, Glover, Khargonekar, Francis, @cite{State-space solutions to standard}## @iftex## @tex## $ { \cal H }_2 $ @cite{and} $ { \cal H }_\infty $## @end tex## @end iftex## @ifinfo## @cite{H-2 and H-infinity}## @end ifinfo## @cite{control problems}, @acronym{IEEE} @acronym{TAC} August 1989;## Iglesias and Glover, @cite{State-Space approach to discrete-time}## @iftex## @tex## $ { \cal H }_\infty $## @end tex## @end iftex## @ifinfo## @cite{H-infinity}## @end ifinfo## @cite{control}, Int. J. Control, vol 54, no. 5, 1991;## Zhou, Doyle, Glover, @cite{Robust and Optimal Control}, Prentice-Hall, 1996.## @end deftypefnfunction [g, gmin, gmax] = hinfnorm (sys, tol, gmin, gmax, ptol) if (nargin == 0 || nargin > 4) print_usage (); elseif (! isstruct (sys)) error ("Sys must be a system data structure"); endif ## set defaults where applicable if (nargin < 5) ptol = 1e-9; # pole tolerance endif if (nargin < 4) gmax = 1e9; # max gain value endif dflg = is_digital (sys); sys = sysupdate (sys, "ss"); [A, B, C, D] = sys2ss (sys); [n, nz, m, p] = sysdimensions (sys); ## eigenvalues of A must all be stable if (! is_stable (sys)) warning ("hinfnorm: unstable system (is_stable, ptol=%g), returning Inf", ptol); g = Inf; endif Dnrm = norm (D); if (nargin < 3) gmin = max (1e-9, Dnrm); # min gain value elseif (gmin < Dnrm) warning ("hinfnorm: setting Gmin=||D||=%g", Dnrm); endif if (nargin < 2) tol = 0.001; # convergence measure for gmin, gmax endif ## check for scalar input arguments 2...5 if (! isscalar (tol) && isscalar (gmin) && isscalar (gmax) && isscalar (ptol)) error ("hinfnorm: tol, gmin, gmax, ptol must be scalars"); endif In = eye (n+nz); Im = eye (m); Ip = eye (p); ## find the Hinf norm via binary search while (gmax/gmin - 1 > tol) g = (gmax+gmin)/2; if (dflg) ## multiply g's through in formulas to avoid extreme magnitudes... Rg = g^2*Im - D'*D; Ak = A + (B/Rg)*D'*C; Ck = g^2*C'*((g^2*Ip-D*D')\C); ## set up symplectic generalized eigenvalue problem per Iglesias & Glover s1 = [Ak , zeros(nz); -Ck, In]; s2 = [In, -(B/Rg)*B'; zeros(nz), Ak']; ## guard against roundoff again: zero out extremely small values ## prior to balancing s1 = s1 .* (abs(s1) > ptol*norm(s1,"inf")); s2 = s2 .* (abs(s2) > ptol*norm(s2,"inf")); [cc, dd, s1, s2] = balance (s1, s2); [qza, qzb, zz, pls] = qz (s1, s2, "S"); # ordered qz decomposition eigerr = abs (abs(pls)-1); normH = norm ([s1, s2]); Hb = [s1, s2]; ## check R - B' X B condition (Iglesias and Glover's paper) X = zz((nz+1):(2*nz),1:nz)/zz(1:nz,1:nz); dcondfailed = min (real (eig (Rg - B'*X*B)) < ptol); else Rinv = inv(g*g*Im - (D' * D)); H = [A + B*Rinv*D'*C, B*Rinv*B'; -C'*(Ip + D*Rinv*D')*C, -(A + B*Rinv*D'*C)']; ## guard against roundoff: zero out extremely small values prior ## to balancing H = H .* (abs (H) > ptol * norm (H, "inf")); [DD, Hb] = balance (H); pls = eig (Hb); eigerr = abs (real (pls)); normH = norm (H); dcondfailed = 0; # digital condition; doesn't apply here endif if ((min (eigerr) <= ptol * normH) | dcondfailed) gmin = g; else gmax = g; endif endwhileendfunction
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -