⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 hinfsyn_ric.m

📁 similer program for matlab
💻 M
字号:
## Copyright (C) 1996, 1998, 2000, 2002, 2004, 2005, 2007##               Auburn University.  All rights reserved.#### This file is part of Octave.#### Octave is free software; you can redistribute it and/or modify it## under the terms of the GNU General Public License as published by## the Free Software Foundation; either version 3 of the License, or (at## your option) any later version.#### Octave is distributed in the hope that it will be useful, but## WITHOUT ANY WARRANTY; without even the implied warranty of## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU## General Public License for more details.#### You should have received a copy of the GNU General Public License## along with Octave; see the file COPYING.  If not, see## <http://www.gnu.org/licenses/>.## -*- texinfo -*-## @deftypefn {Function File} {[@var{xinf}, @var{x_ha_err}] =} hinfsyn_ric (@var{a}, @var{bb}, @var{c1}, @var{d1dot}, @var{r}, @var{ptol})## Forms## @example## xx = ([bb; -c1'*d1dot]/r) * [d1dot'*c1 bb'];## Ha = [a 0*a; -c1'*c1 - a'] - xx;## @end example## and solves associated Riccati equation.## The error code @var{x_ha_err} indicates one of the following## conditions:## @table @asis## @item 0## successful## @item 1## @var{xinf} has imaginary eigenvalues## @item 2## @var{hx} not Hamiltonian## @item 3## @var{xinf} has infinite eigenvalues (numerical overflow)## @item 4## @var{xinf} not symmetric## @item 5## @var{xinf} not positive definite## @item 6## @var{r} is singular## @end table## @end deftypefnfunction [Xinf, x_ha_err] = hinfsyn_ric (A, BB, C1, d1dot, R, ptol)  if (nargin != 6)    print_usage ();  endif  x_ha_err = 0;        # assume success  Xinf = [];                 # default return value  n = issquare (A);  nw = issquare (R);  if (rank (R) != nw)    x_ha_err = 6;  else                 # build hamiltonian Ha for X_inf    xx = ([BB; -C1'*d1dot]/R) * [d1dot'*C1, BB'];    Ha = [A, 0*A; -C1'*C1, -A'] - xx;    x_ha_err = 0;    [d, Ha] = balance (Ha);    [u, s] = schur (Ha, "A");    rev = real (eig (s));    if (any (abs (rev) <= ptol))  # eigenvalues near the imaginary axis      x_ha_err = 1;    elseif (sum (rev > 0) != sum (rev < 0))      ## unequal number of positive and negative eigenvalues      x_ha_err = 2;    else      ## compute positive Riccati equation solution      u = d * u;      Xinf = u(n+1:2*n,1:n) / u(1:n,1:n);      if (! all (all (finite (Xinf))))        x_ha_err = 3;      elseif (norm (Xinf-Xinf') >= 10*ptol)        ## solution not symmetric        x_ha_err = 4;      else        ## positive semidefinite?        ## force symmetry (faster, avoids some convergence problems)        Xinf = (Xinf + Xinf')/2;        rev = eig (Xinf);        if (any (rev <= -ptol))          x_ha_err = 5;        endif      endif    endif  endifendfunction

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -