📄 hinfsyn_ric.m
字号:
## Copyright (C) 1996, 1998, 2000, 2002, 2004, 2005, 2007## Auburn University. All rights reserved.#### This file is part of Octave.#### Octave is free software; you can redistribute it and/or modify it## under the terms of the GNU General Public License as published by## the Free Software Foundation; either version 3 of the License, or (at## your option) any later version.#### Octave is distributed in the hope that it will be useful, but## WITHOUT ANY WARRANTY; without even the implied warranty of## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU## General Public License for more details.#### You should have received a copy of the GNU General Public License## along with Octave; see the file COPYING. If not, see## <http://www.gnu.org/licenses/>.## -*- texinfo -*-## @deftypefn {Function File} {[@var{xinf}, @var{x_ha_err}] =} hinfsyn_ric (@var{a}, @var{bb}, @var{c1}, @var{d1dot}, @var{r}, @var{ptol})## Forms## @example## xx = ([bb; -c1'*d1dot]/r) * [d1dot'*c1 bb'];## Ha = [a 0*a; -c1'*c1 - a'] - xx;## @end example## and solves associated Riccati equation.## The error code @var{x_ha_err} indicates one of the following## conditions:## @table @asis## @item 0## successful## @item 1## @var{xinf} has imaginary eigenvalues## @item 2## @var{hx} not Hamiltonian## @item 3## @var{xinf} has infinite eigenvalues (numerical overflow)## @item 4## @var{xinf} not symmetric## @item 5## @var{xinf} not positive definite## @item 6## @var{r} is singular## @end table## @end deftypefnfunction [Xinf, x_ha_err] = hinfsyn_ric (A, BB, C1, d1dot, R, ptol) if (nargin != 6) print_usage (); endif x_ha_err = 0; # assume success Xinf = []; # default return value n = issquare (A); nw = issquare (R); if (rank (R) != nw) x_ha_err = 6; else # build hamiltonian Ha for X_inf xx = ([BB; -C1'*d1dot]/R) * [d1dot'*C1, BB']; Ha = [A, 0*A; -C1'*C1, -A'] - xx; x_ha_err = 0; [d, Ha] = balance (Ha); [u, s] = schur (Ha, "A"); rev = real (eig (s)); if (any (abs (rev) <= ptol)) # eigenvalues near the imaginary axis x_ha_err = 1; elseif (sum (rev > 0) != sum (rev < 0)) ## unequal number of positive and negative eigenvalues x_ha_err = 2; else ## compute positive Riccati equation solution u = d * u; Xinf = u(n+1:2*n,1:n) / u(1:n,1:n); if (! all (all (finite (Xinf)))) x_ha_err = 3; elseif (norm (Xinf-Xinf') >= 10*ptol) ## solution not symmetric x_ha_err = 4; else ## positive semidefinite? ## force symmetry (faster, avoids some convergence problems) Xinf = (Xinf + Xinf')/2; rev = eig (Xinf); if (any (rev <= -ptol)) x_ha_err = 5; endif endif endif endifendfunction
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -