📄 hinf_ctr.m
字号:
## Copyright (C) 1996, 2000, 2004, 2005, 2007## Auburn University. All rights reserved.#### This file is part of Octave.#### Octave is free software; you can redistribute it and/or modify it## under the terms of the GNU General Public License as published by## the Free Software Foundation; either version 3 of the License, or (at## your option) any later version.#### Octave is distributed in the hope that it will be useful, but## WITHOUT ANY WARRANTY; without even the implied warranty of## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU## General Public License for more details.#### You should have received a copy of the GNU General Public License## along with Octave; see the file COPYING. If not, see## <http://www.gnu.org/licenses/>.## -*- texinfo -*-## @deftypefn {Function File} {@var{K} =} hinf_ctr (@var{dgs}, @var{f}, @var{h}, @var{z}, @var{g})## Called by @code{hinfsyn} to compute the ## @iftex## @tex## $ { \cal H }_\infty $## @end tex## @end iftex## @ifinfo## H-infinity## @end ifinfo## optimal controller.#### @strong{Inputs}## @table @var## @item dgs## data structure returned by @code{is_dgkf}## @item f## @itemx h## feedback and filter gain (not partitioned)## @item g## final gamma value## @end table## @strong{Outputs}## @table @var## @item K## controller (system data structure)## @end table#### Do not attempt to use this at home; no argument checking performed.## @end deftypefn## Author: A. S. Hodel <a.s.hodel@eng.auburn.edu>## Created: August 1995## Revised by Kai P. Mueller April 1998 to solve the general H_infinity## problem using unitary transformations Q (on w and z)## and non-singular transformations R (on u and y).function K = hinf_ctr (dgs, F, H, Z, g) if (nargin != 5) print_usage (); endif nw = dgs.nw; nu = dgs.nu; nz = dgs.nz; ny = dgs.ny; d22nz = dgs.Dyu_nz; B1 = dgs.Bw; B2 = dgs.Bu; C1 = dgs.Cz; C2 = dgs.Cy; C = [C1; C2]; D11 = dgs.Dzw; D12 = dgs.Dzu; D21 = dgs.Dyw; D22 = dgs.Dyu; A = dgs.A; Ru = dgs.Ru; Ry = dgs.Ry; nout = nz + ny; nin = nw + nu; nstates = size (A, 1); F11 = F(1:(nw-ny),:); F12 = F((nw-ny+1):nw,:); F2 = F((nw+1):nin,:); H11 = H(:,1:(nz-nu)); H12 = H(:,(nz-nu+1):nz); H2 = H(:,(nz+1):nout); ## D11 partitions D1111 = D11(1:(nz-nu),1:(nw-ny)); D1112 = D11(1:(nz-nu),(nw-ny+1):nw); D1121 = D11((nz-nu+1):nz,1:(nw-ny)); D1122 = D11((nz-nu+1):nz,(nw-ny+1):nw); ## D11ik may be the empty matrix, don't calculate with empty matrices [nd1111, md1111] = size (D1111); md1112 = length (D1112); md1121 = length (D1121); if (nd1111 == 0 || md1112 == 0) d11hat = -D1122; else xx = inv (g*g*eye(nz-nu) - D1111*D1111'); d11hat = -D1121*D1111'*xx*D1112 - D1122; endif if (md1112 == 0) d21hat = eye (ny); elseif (nd1111 == 0) d21hat = chol (eye(ny) - D1112'*D1112/g/g); else xx = inv (g*g*eye(nz-nu) - D1111*D1111'); xx = eye (ny) - D1112'*xx*D1112; d21hat = chol (xx); endif if (md1121 == 0) d12hat = eye (nu); elseif (md1111 == 0) d12hat = chol (eye(nu) - D1121*D1121'/g/g)'; else xx = inv (g*g*eye(nw-ny) - D1111'*D1111); xx = eye (nu)-D1121*xx*D1121'; d12hat = chol (xx)'; endif b2hat = (B2+H12)*d12hat; c2hat = -d21hat*(C2+F12)*Z; b1hat = -H2 + (b2hat/d12hat)*d11hat; c1hat = F2*Z + (d11hat/d21hat)*c2hat; ahat = A + H*C + (b2hat/d12hat)*c1hat; ## rescale controller by Ru and Ry b1hat = b1hat/Ry; c1hat = Ru\c1hat; bhat = [b1hat, b2hat]; chat = [c1hat; c2hat]; dhat = [Ru\d11hat/Ry, Ru\d12hat; d21hat/Ry, 0*d11hat']; ## non-zero D22 is a special case if (d22nz) if (rank (eye(nu) + d11hat*D22) < nu) error (" *** cannot compute controller for D22 non-zero."); endif d22new = [D22, zeros(ny,ny); zeros(nu,nu), 0*D22']; xx = inv (eye(nu+ny) + d22new*dhat); mhat = inv (eye(nu+ny) + dhat*d22new); ahat = ahat - bhat*((eye(nu+ny)-xx)/dhat)*chat; bhat = bhat*xx; chat = mhat*chat; dhat = dhat*xx; endif K = ss (ahat, bhat(:,1:ny), chat(1:nu,:), dhat(1:nu,1:ny));endfunction
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -