⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 zgscal.m

📁 similer program for matlab
💻 M
字号:
## Copyright (C) 1996, 1998, 2000, 2002, 2004, 2005, 2007##               Auburn University.  All rights reserved.#### This file is part of Octave.#### Octave is free software; you can redistribute it and/or modify it## under the terms of the GNU General Public License as published by## the Free Software Foundation; either version 3 of the License, or (at## your option) any later version.#### Octave is distributed in the hope that it will be useful, but## WITHOUT ANY WARRANTY; without even the implied warranty of## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU## General Public License for more details.#### You should have received a copy of the GNU General Public License## along with Octave; see the file COPYING.  If not, see## <http://www.gnu.org/licenses/>.## -*- texinfo -*-## @deftypefn {Function File} {@var{x} =} zgscal (@var{f}, @var{z}, @var{n}, @var{m}, @var{p})## Generalized conjugate gradient iteration to## solve zero-computation generalized eigenvalue problem balancing equation## @math{fx=z}; called by @command{zgepbal}.## @end deftypefn## References:## ZGEP: Hodel, "Computation of Zeros with Balancing," 1992, submitted to  LAA## Generalized CG: Golub and Van Loan, "Matrix Computations, 2nd ed" 1989## Author: A. S. Hodel <a.s.hodel@eng.auburn.edu>## Created: July 24, 1992## Conversion to Octave R. Bruce Tenison July 3, 1994function x = zgscal (a, b, c, d, z, n, m, p)  if (nargin != 8)    print_usage ();  endif  ## initialize parameters:  ## Givens rotations, diagonalized 2x2 block of F, gcg vector initialization  nmp = n+m+p;  ## x_0 = x_{-1} = 0, r_0 = z  x = zeros (nmp, 1);  xk1 = x;  xk2 = x;  rk1 = z;  k = 0;  ## construct balancing least squares problem  F = eye (nmp);  for kk = 1:nmp    F(1:nmp,kk) = zgfmul (a, b, c, d, F(:,kk));  endfor  [U, H, k1] = krylov (F, z, nmp, 1e-12, 1);  if (! issquare (H))    if (columns (H) != k1)      error ("zgscal(tzero): k1=%d, columns(H)=%d", k1, columns (H));    elseif (rows (H) != k1+1)      error ("zgscal: k1=%d, rows(H) = %d", k1, rows (H));    elseif (norm (H(k1+1,:)) > 1e-12*norm (H, "inf"))      zgscal_last_row_of_H = H(k1+1,:)      error ("zgscal: last row of H nonzero (norm(H)=%e)", norm (H, "inf"))    endif    H = H(1:k1,1:k1);    U = U(:,1:k1);  endif  ## tridiagonal H can still be rank deficient, so do permuted qr  ## factorization  [qq, rr, pp] = qr (H);   # H = qq*rr*pp'  nn = rank (rr);  qq = qq(:,1:nn);  rr = rr(1:nn,:);            # rr may not be square, but "\" does least  xx = U*pp*(rr\qq'*(U'*z));  # squares solution, so this works  ## xx1 = pinv(F)*z;  ## zgscal_x_xx1_err = [xx,xx1,xx-xx1]  return;  ## the rest of this is left from the original zgscal;  ## I've had some numerical problems with the GCG algorithm,  ## so for now I'm solving it with the krylov routine.  ## initialize residual error norm  rnorm = norm (rk1, 1);  xnorm = 0;  fnorm = 1e-12 * norm ([a, b; c, d], 1);  gamk2 = 0;  omega1 = 0;  ztmz2 = 0;  ## do until small changes to x  len_x = length(x);  while ((k < 2*len_x && xnorm > 0.5 && rnorm > fnorm) || k == 0)    k++;    ## solve F_d z_{k-1} = r_{k-1}    zk1= zgfslv (n, m, p, rk1);    ## Generalized CG iteration    ## gamk1 = (zk1'*F_d*zk1)/(zk1'*F*zk1);    ztMz1 = zk1'*rk1;    gamk1 = ztMz1/(zk1'*zgfmul (a, b, c, d, zk1));    if (rem (k, len_x) == 1)      omega = 1;    else      omega = 1/(1-gamk1*ztMz1/(gamk2*omega1*ztmz2));    endif    ## store x in xk2 to save space    xk2 = xk2 + omega*(gamk1*zk1 + xk1 - xk2);    ## compute new residual error: rk = z - F xk, check end conditions    rk1 = z - zgfmul (a, b, c, d, xk2);    rnorm = norm (rk1);    xnorm = max (abs (xk1 - xk2));    ## printf("zgscal: k=%d, gamk1=%e, gamk2=%e, \nztMz1=%e ztmz2=%e\n", ...    ##   k,gamk1, gamk2, ztMz1, ztmz2);    ## xk2_1_zk1 = [xk2 xk1 zk1]    ## ABCD = [a,b;c,d]    ## prompt    ## get ready for next iteration    gamk2 = gamk1;    omega1 = omega;    ztmz2 = ztMz1;    [xk1, xk2] = swap (xk1, xk2);  endwhile  x = xk2;  ## check convergence  if (xnorm> 0.5 && rnorm > fnorm)    warning ("zgscal(tzero): GCG iteration failed; solving with pinv");    ## perform brute force least squares; construct F    Am = eye (nmp);    for ii = 1:nmp      Am(:,ii) = zgfmul (a, b, c, d, Am(:,ii));    endfor    ## now solve with qr factorization    x = pinv (Am) * z;  endifendfunction

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -