📄 dlqr.m
字号:
## Copyright (C) 1993, 1994, 1995, 2000, 2002, 2003, 2005, 2007## Auburn University#### This file is part of Octave.#### Octave is free software; you can redistribute it and/or modify it## under the terms of the GNU General Public License as published by## the Free Software Foundation; either version 3 of the License, or (at## your option) any later version.#### Octave is distributed in the hope that it will be useful, but## WITHOUT ANY WARRANTY; without even the implied warranty of## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU## General Public License for more details.#### You should have received a copy of the GNU General Public License## along with Octave; see the file COPYING. If not, see## <http://www.gnu.org/licenses/>.## -*- texinfo -*-## @deftypefn {Function File} {[@var{k}, @var{p}, @var{e}] =} dlqr (@var{a}, @var{b}, @var{q}, @var{r}, @var{z})## Construct the linear quadratic regulator for the discrete time system## @iftex## @tex## $$## x_{k+1} = A x_k + B u_k## $$## @end tex## @end iftex## @ifinfo#### @example## x[k+1] = A x[k] + B u[k]## @end example#### @end ifinfo## to minimize the cost functional## @iftex## @tex## $$## J = \sum x^T Q x + u^T R u## $$## @end tex## @end iftex## @ifinfo#### @example## J = Sum (x' Q x + u' R u)## @end example## @end ifinfo#### @noindent## @var{z} omitted or## @iftex## @tex## $$## J = \sum x^T Q x + u^T R u + 2 x^T Z u## $$## @end tex## @end iftex## @ifinfo#### @example## J = Sum (x' Q x + u' R u + 2 x' Z u)## @end example#### @end ifinfo## @var{z} included.#### The following values are returned:#### @table @var## @item k## The state feedback gain,## @iftex## @tex## $(A - B K)$## @end tex## @end iftex## @ifinfo## (@var{a} - @var{b}@var{k})## @end ifinfo## is stable.#### @item p## The solution of algebraic Riccati equation.#### @item e## The closed loop poles of## @iftex## @tex## $(A - B K)$.## @end tex## @end iftex## @ifinfo## (@var{a} - @var{b}@var{k}).## @end ifinfo## @end table## @end deftypefn## Author: A. S. Hodel <a.s.hodel@eng.auburn.edu>## Created: August 1993## Converted to discrete time by R. B. Tenison## (btenison@eng.auburn.edu) October 1993function [k, p, e] = dlqr (a, b, q, r, s) if (nargin != 4 && nargin != 5) error ("dlqr: invalid number of arguments"); endif ## Dimension check is done inside dare.m [n,m] = size(b); ## Check if s is there. if (nargin == 5) [n1, m1] = size (s); if (n1 != n || m1 != m) error ("dlqr: z must be identically dimensioned with b"); endif ## Incorporate cross term into a and q. ao = a - (b/r)*s'; qo = q - (s/r)*s'; else s = zeros (n, m); ao = a; qo = q; endif ## Checking stabilizability and detectability (dimensions are checked ## inside these calls). tol = 200*eps; if (is_stabilizable (ao, b, tol, 1) == 0) error ("dlqr: (a,b) not stabilizable"); endif dflag = is_detectable (ao, qo, tol, 1); if (dflag == 0) warning ("dlqr: (a,q) not detectable"); elseif (dflag == -1) error ("dlqr: (a,q) has non minimal modes near unit circle"); endif ## Compute the Riccati solution p = dare (ao, b, qo, r); k = (r+b'*p*b)\(b'*p*a + s'); e = eig (a - b*k);endfunction
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -