⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 lqr.m

📁 similer program for matlab
💻 M
字号:
## Copyright (C) 1993, 1994, 1995, 2000, 2002, 2004, 2005, 2007##               Auburn University.  All rights reserved.#### This file is part of Octave.#### Octave is free software; you can redistribute it and/or modify it## under the terms of the GNU General Public License as published by## the Free Software Foundation; either version 3 of the License, or (at## your option) any later version.#### Octave is distributed in the hope that it will be useful, but## WITHOUT ANY WARRANTY; without even the implied warranty of## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU## General Public License for more details.#### You should have received a copy of the GNU General Public License## along with Octave; see the file COPYING.  If not, see## <http://www.gnu.org/licenses/>.## -*- texinfo -*-## @deftypefn {Function File} {[@var{k}, @var{p}, @var{e}] =} lqr (@var{a}, @var{b}, @var{q}, @var{r}, @var{z})## construct the linear quadratic regulator for the continuous time system## @iftex## @tex## $$##  {dx\over dt} = A x + B u## $$## @end tex## @end iftex## @ifinfo#### @example## dx## -- = A x + B u## dt## @end example#### @end ifinfo## to minimize the cost functional## @iftex## @tex## $$##  J = \int_0^\infty x^T Q x + u^T R u## $$## @end tex## @end iftex## @ifinfo#### @example##       infinity##       /##   J = |  x' Q x + u' R u##      /##     t=0## @end example## @end ifinfo#### @noindent## @var{z} omitted or## @iftex## @tex## $$##  J = \int_0^\infty x^T Q x + u^T R u + 2 x^T Z u## $$## @end tex## @end iftex## @ifinfo#### @example##       infinity##       /##   J = |  x' Q x + u' R u + 2 x' Z u##      /##     t=0## @end example#### @end ifinfo## @var{z} included.#### The following values are returned:#### @table @var## @item k## The state feedback gain,## @iftex## @tex## $(A - B K)$## @end tex## @end iftex## @ifinfo## (@var{a} - @var{b}@var{k})## @end ifinfo## is stable and minimizes the cost functional#### @item p## The stabilizing solution of appropriate algebraic Riccati equation.#### @item e## The vector of the closed loop poles of## @iftex## @tex## $(A - B K)$.## @end tex## @end iftex## @ifinfo## (@var{a} - @var{b}@var{k}).## @end ifinfo## @end table#### @strong{Reference}## Anderson and Moore, @cite{Optimal control: linear quadratic methods},## Prentice-Hall, 1990, pp. 56--58.## @end deftypefn## Author: A. S. Hodel <a.s.hodel@eng.auburn.edu>## Created: August 1993.function [k, p, e] = lqr (a, b, q, r, s)  ## disp("lqr: entry");  if (nargin != 4 && nargin != 5)    error ("lqr: invalid number of arguments");  endif  ## Check a.  if ((n = issquare (a)) == 0)    error ("lqr: requires 1st parameter(a) to be square");  endif  ## Check b.  [n1, m] = size (b);  if (n1 != n)    error ("lqr: a,b not conformal");  endif  ## Check q.  if ((n1 = issquare (q)) == 0 || n1 != n)    error ("lqr: q must be square and conformal with a");  endif  ## Check r.  if ((m1 = issquare(r)) == 0 || m1 != m)    error ("lqr: r must be square and conformal with column dimension of b");  endif  ## Check if n is there.  if (nargin == 5)    [n1, m1] = size (s);    if (n1 != n || m1 != m)      error ("lqr: z must be identically dimensioned with b");    endif    ## Incorporate cross term into a and q.    ao = a - (b/r)*s';    qo = q - (s/r)*s';  else    s = zeros (n, m);    ao = a;    qo = q;  endif  ## Check that q, (r) are symmetric, positive (semi)definite  if (issymmetric (q) && issymmetric (r)      && all (eig (q) >= 0) && all (eig (r) > 0))    p = are (ao, (b/r)*b', qo);    k = r\(b'*p + s');    e = eig (a - b*k);  else    error ("lqr: q (r) must be symmetric positive (semi) definite");  endifendfunction

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -