📄 lqr.m
字号:
## Copyright (C) 1993, 1994, 1995, 2000, 2002, 2004, 2005, 2007## Auburn University. All rights reserved.#### This file is part of Octave.#### Octave is free software; you can redistribute it and/or modify it## under the terms of the GNU General Public License as published by## the Free Software Foundation; either version 3 of the License, or (at## your option) any later version.#### Octave is distributed in the hope that it will be useful, but## WITHOUT ANY WARRANTY; without even the implied warranty of## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU## General Public License for more details.#### You should have received a copy of the GNU General Public License## along with Octave; see the file COPYING. If not, see## <http://www.gnu.org/licenses/>.## -*- texinfo -*-## @deftypefn {Function File} {[@var{k}, @var{p}, @var{e}] =} lqr (@var{a}, @var{b}, @var{q}, @var{r}, @var{z})## construct the linear quadratic regulator for the continuous time system## @iftex## @tex## $$## {dx\over dt} = A x + B u## $$## @end tex## @end iftex## @ifinfo#### @example## dx## -- = A x + B u## dt## @end example#### @end ifinfo## to minimize the cost functional## @iftex## @tex## $$## J = \int_0^\infty x^T Q x + u^T R u## $$## @end tex## @end iftex## @ifinfo#### @example## infinity## /## J = | x' Q x + u' R u## /## t=0## @end example## @end ifinfo#### @noindent## @var{z} omitted or## @iftex## @tex## $$## J = \int_0^\infty x^T Q x + u^T R u + 2 x^T Z u## $$## @end tex## @end iftex## @ifinfo#### @example## infinity## /## J = | x' Q x + u' R u + 2 x' Z u## /## t=0## @end example#### @end ifinfo## @var{z} included.#### The following values are returned:#### @table @var## @item k## The state feedback gain,## @iftex## @tex## $(A - B K)$## @end tex## @end iftex## @ifinfo## (@var{a} - @var{b}@var{k})## @end ifinfo## is stable and minimizes the cost functional#### @item p## The stabilizing solution of appropriate algebraic Riccati equation.#### @item e## The vector of the closed loop poles of## @iftex## @tex## $(A - B K)$.## @end tex## @end iftex## @ifinfo## (@var{a} - @var{b}@var{k}).## @end ifinfo## @end table#### @strong{Reference}## Anderson and Moore, @cite{Optimal control: linear quadratic methods},## Prentice-Hall, 1990, pp. 56--58.## @end deftypefn## Author: A. S. Hodel <a.s.hodel@eng.auburn.edu>## Created: August 1993.function [k, p, e] = lqr (a, b, q, r, s) ## disp("lqr: entry"); if (nargin != 4 && nargin != 5) error ("lqr: invalid number of arguments"); endif ## Check a. if ((n = issquare (a)) == 0) error ("lqr: requires 1st parameter(a) to be square"); endif ## Check b. [n1, m] = size (b); if (n1 != n) error ("lqr: a,b not conformal"); endif ## Check q. if ((n1 = issquare (q)) == 0 || n1 != n) error ("lqr: q must be square and conformal with a"); endif ## Check r. if ((m1 = issquare(r)) == 0 || m1 != m) error ("lqr: r must be square and conformal with column dimension of b"); endif ## Check if n is there. if (nargin == 5) [n1, m1] = size (s); if (n1 != n || m1 != m) error ("lqr: z must be identically dimensioned with b"); endif ## Incorporate cross term into a and q. ao = a - (b/r)*s'; qo = q - (s/r)*s'; else s = zeros (n, m); ao = a; qo = q; endif ## Check that q, (r) are symmetric, positive (semi)definite if (issymmetric (q) && issymmetric (r) && all (eig (q) >= 0) && all (eig (r) > 0)) p = are (ao, (b/r)*b', qo); k = r\(b'*p + s'); e = eig (a - b*k); else error ("lqr: q (r) must be symmetric positive (semi) definite"); endifendfunction
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -