📄 nyquist.m
字号:
## Copyright (C) 1996, 1998, 2000, 2003, 2004, 2005, 2006, 2007## Auburn University. All rights reserved.#### This file is part of Octave.#### Octave is free software; you can redistribute it and/or modify it## under the terms of the GNU General Public License as published by## the Free Software Foundation; either version 3 of the License, or (at## your option) any later version.#### Octave is distributed in the hope that it will be useful, but## WITHOUT ANY WARRANTY; without even the implied warranty of## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU## General Public License for more details.#### You should have received a copy of the GNU General Public License## along with Octave; see the file COPYING. If not, see## <http://www.gnu.org/licenses/>.## -*- texinfo -*-## @deftypefn {Function File} {[@var{realp}, @var{imagp}, @var{w}] =} nyquist (@var{sys}, @var{w}, @var{out_idx}, @var{in_idx}, @var{atol})## @deftypefnx {Function File} {} nyquist (@var{sys}, @var{w}, @var{out_idx}, @var{in_idx}, @var{atol})## Produce Nyquist plots of a system; if no output arguments are given, Nyquist## plot is printed to the screen.#### Compute the frequency response of a system.#### @strong{Inputs} (pass as empty to get default values)## @table @var## @item sys## system data structure (must be either purely continuous or discrete;## see @code{is_digital})## @item w## frequency values for evaluation.## If sys is continuous, then bode evaluates @math{G(@var{jw})}; ## if sys is discrete, then bode evaluates @math{G(exp(@var{jwT}))},## where @var{T} is the system sampling time.## @item default## the default frequency range is selected as follows: (These## steps are @strong{not} performed if @var{w} is specified)## @enumerate## @item via routine @command{__bodquist__}, isolate all poles and zeros away from## @var{w}=0 (@var{jw}=0 or @math{exp(@var{jwT})=1}) and select the frequency## range based on the breakpoint locations of the frequencies.## @item if @var{sys} is discrete time, the frequency range is limited## to @var{jwT} in## @ifinfo## [0,2p*pi]## @end ifinfo## @iftex## @tex## $ [ 0,2 p \pi ] $## @end tex## @end iftex## @item A ``smoothing'' routine is used to ensure that the plot phase does## not change excessively from point to point and that singular## points (e.g., crossovers from +/- 180) are accurately shown.## @end enumerate## @item atol## for interactive nyquist plots: atol is a change-in-slope tolerance## for the of asymptotes (default = 0; 1e-2 is a good choice). This allows## the user to ``zoom in'' on portions of the Nyquist plot too small to be## seen with large asymptotes.## @end table## @strong{Outputs}## @table @var## @item realp## @itemx imagp## the real and imaginary parts of the frequency response## @math{G(jw)} or @math{G(exp(jwT))} at the selected frequency values.## @item w## the vector of frequency values used## @end table#### If no output arguments are given, nyquist plots the results to the screen.## If @var{atol} != 0 and asymptotes are detected then the user is asked## interactively if they wish to zoom in (remove asymptotes)## Descriptive labels are automatically placed.#### Note: if the requested plot is for an @acronym{MIMO} system, a warning message is## presented; the returned information is of the magnitude## @iftex## @tex## $ \Vert G(jw) \Vert $ or $ \Vert G( {\rm exp}(jwT) \Vert $## @end tex## @end iftex## @ifinfo## ||G(jw)|| or ||G(exp(jwT))||## @end ifinfo## only; phase information is not computed.## @end deftypefn## Author: R. Bruce Tenison <btenison@eng.auburn.edu>## Created: July 13, 1994## A. S. Hodel July 1995 (adaptive frequency spacing,## remove acura parameter, etc.)## Revised by John Ingram July 1996 for system formatfunction [realp, imagp, w] = nyquist (sys, w, outputs, inputs, atol) ## Both bode and nyquist share the same introduction, so the common ## parts are in a file called __bodquist__.m. It contains the part that ## finds the number of arguments, determines whether or not the system ## is SISO, andd computes the frequency response. Only the way the ## response is plotted is different between the two functions. ## check number of input arguments given if (nargin < 1 || nargin > 5) print_usage (); endif if (nargin < 2) w = []; endif if (nargin < 3) outputs = []; endif if (nargin < 4) inputs = []; endif if (nargin < 5) atol = 0; elseif (! (is_sample (atol) || atol == 0)) error ("nyquist: atol must be a nonnegative scalar") endif ## signal to __bodquist__ who's calling [f, w, sys] = __bodquist__ (sys, w, outputs, inputs, "nyquist"); ## Get the real and imaginary part of f. realp = real (f); imagp = imag (f); ## No output arguments, then display plot, otherwise return data. if (nargout == 0) dnplot = 0; while (! dnplot) plot (realp, imagp, "- ;+w;", realp, -imagp, "-@ ;-w;"); grid ("on"); if (is_digital (sys)) tstr = " G(e^{jw}) "; else tstr = " G(jw) "; endif xlabel (sprintf ("Re(%s)", tstr)); ylabel (sprintf ("Im(%s)", tstr)); [stn, inn, outn] = sysgetsignals (sys); if (is_siso (sys)) title (sprintf ("Nyquist plot from %s to %s, w (rad/s) in [%e, %e]", inn{1}, outn{1}, w(1), w(end))); endif axis (axis2dlim ([[realp(:), imagp(:)]; [realp(:), -imagp(:)]])); ## check for interactive plots dnplot = 1; # assume done; will change later if atol is satisfied if (atol > 0 && length (f) > 2) ## check for asymptotes fmax = max (abs (f)); fi = find (abs (f) == fmax, 1, "last"); ## compute angles from point to point df = diff (f); th = atan2 (real (df), imag (df)) * 180 / pi; ## get angle at fmax if (fi == length (f)) fi = fi-1; endif thm = th(fi); ## now locate consecutive angles within atol of thm ith_same = find (abs (th - thm) < atol); ichk = union (fi, find (diff (ith_same) == 1)); ## locate max, min consecutive indices in ichk loval = max (complement (ichk, 1:fi)); if (isempty (loval)) loval = fi; else loval = loval + 1; endif hival = min (complement (ichk, fi:length(th))); if (isempty (hival)) hival = fi+1; endif keep_idx = complement (loval:hival, 1:length(w)); if (length (keep_idx)) resp = input ("Remove asymptotes and zoom in (y or n): ", 1); if (resp(1) == "y") dnplot = 0; # plot again w = w(keep_idx); f = f(keep_idx); realp = real (f); imagp = imag (f); endif endif endif endwhile w = realp = imagp = []; endifendfunction
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -