⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 tvqc_newton.m

📁 基于内点法的解l2_l1和l2_TV优化问题的matlab代码
💻 M
字号:
% tvqc_newton.m%% Newton algorithm for log-barrier subproblems for TV minimization% with quadratic constraints.%% Usage: % [xp,tp,niter] = tvqc_newton(x0, t0, A, At, b, epsilon, tau, %                             newtontol, newtonmaxiter, cgtol, cgmaxiter)%% x0,t0 - starting points%% A - Either a handle to a function that takes a N vector and returns a K %     vector , or a KxN matrix.  If A is a function handle, the algorithm%     operates in "largescale" mode, solving the Newton systems via the%     Conjugate Gradients algorithm.%% At - Handle to a function that takes a K vector and returns an N vector.%      If A is a KxN matrix, At is ignored.%% b - Kx1 vector of observations.%% epsilon - scalar, constraint relaxation parameter%% tau - Log barrier parameter.%% newtontol - Terminate when the Newton decrement is <= newtontol.%% newtonmaxiter - Maximum number of iterations.%% cgtol - Tolerance for Conjugate Gradients; ignored if A is a matrix.%% cgmaxiter - Maximum number of iterations for Conjugate Gradients; ignored%     if A is a matrix.%% Written by: Justin Romberg, Caltech% Email: jrom@acm.caltech.edu% Created: October 2005%function [xp, tp, niter] = tvqc_newton(x0, t0, A, At, b, epsilon, tau, newtontol, newtonmaxiter, cgtol, cgmaxiter) largescale = isa(A,'function_handle'); alpha = 0.01;beta = 0.5;  N = length(x0);n = round(sqrt(N));% create (sparse) differencing matrices for TVDv = spdiags([reshape([-ones(n-1,n); zeros(1,n)],N,1) ...  reshape([zeros(1,n); ones(n-1,n)],N,1)], [0 1], N, N);Dh = spdiags([reshape([-ones(n,n-1) zeros(n,1)],N,1) ...  reshape([zeros(n,1) ones(n,n-1)],N,1)], [0 n], N, N);if (~largescale),  AtA = A'*A;  end;% initial pointx = x0;t = t0;if (largescale), r = A(x) - b;  else,  r = A*x - b; end  Dhx = Dh*x;  Dvx = Dv*x;ft = 1/2*(Dhx.^2 + Dvx.^2 - t.^2);fe = 1/2*(r'*r - epsilon^2);f = sum(t) - (1/tau)*(sum(log(-ft)) + log(-fe));niter = 0;done = 0;while (~done)    if (largescale),  Atr = At(r);  else,  Atr = A'*r;  end  ntgx = Dh'*((1./ft).*Dhx) + Dv'*((1./ft).*Dvx) + 1/fe*Atr;  ntgt = -tau - t./ft;  gradf = -(1/tau)*[ntgx; ntgt];    sig22 = 1./ft + (t.^2)./(ft.^2);  sig12 = -t./ft.^2;  sigb = 1./ft.^2 - (sig12.^2)./sig22;    w1p = ntgx - Dh'*(Dhx.*(sig12./sig22).*ntgt) - Dv'*(Dvx.*(sig12./sig22).*ntgt);  if (largescale)    h11pfun = @(z) H11p(z, A, At, Dh, Dv, Dhx, Dvx, sigb, ft, fe, Atr);    [dx, cgres, cgiter] = cgsolve(h11pfun, w1p, cgtol, cgmaxiter, 0);    if (cgres > 1/2)      disp('Newton: Cannot solve system.  Returning previous iterate.');      xp = x;  tp = t;      return    end    Adx = A(dx);  else    H11p =  Dh'*diag(-1./ft + sigb.*Dhx.^2)*Dh + Dv'*diag(-1./ft + sigb.*Dvx.^2)*Dv + ...      Dh'*diag(sigb.*Dhx.*Dvx)*Dv + Dv'*diag(sigb.*Dhx.*Dvx)*Dh - ...      (1/fe)*AtA + (1/fe^2)*Atr*Atr';    [dx,hcond] = linsolve(H11p,w1p);    if (hcond < 1e-14)      disp('Newton: Matrix ill-conditioned.  Returning previous iterate.');      xp = x;  tp = t;      return    end    Adx = A*dx;  end  Dhdx = Dh*dx;  Dvdx = Dv*dx;  dt = (1./sig22).*(ntgt - sig12.*(Dhx.*Dhdx + Dvx.*Dvdx));  % minimum step size that stays in the interior  s = 1;  xp = x + s*dx;  tp = t + s*dt;  rp = r + s*Adx;  Dhxp = Dhx + s*Dhdx;  Dvxp = Dvx + s*Dvdx;  coneiter = 0;  while ( (max(sqrt(Dhxp.^2+Dvxp.^2) - tp) > 0) | (rp'*rp > epsilon^2) )    s = beta*s;    %1/2*(rp'*rp - epsilon^2)    xp = x + s*dx;  tp = t + s*dt;    rp = r + s*Adx;  Dhxp = Dhx + s*Dhdx;  Dvxp = Dvx + s*Dvdx;    coneiter = coneiter + 1;    if (coneiter > 32)      disp('Stuck on cone iterations, returning previous iterate.');      xp = x;  tp = t;      return    end       end      % backtracking line search  ftp = 1/2*(Dhxp.^2 + Dvxp.^2 - tp.^2);  fep = 1/2*(rp'*rp - epsilon^2);  fp = sum(tp) - (1/tau)*(sum(log(-ftp)) + log(-fep));  flin = f + alpha*s*(gradf'*[dx; dt]);  backiter = 0;  while (fp > flin)    s = beta*s;    xp = x + s*dx;  tp = t + s*dt;    rp = r + s*Adx;  Dhxp = Dhx + s*Dhdx;  Dvxp = Dvx + s*Dvdx;    ftp = 1/2*(Dhxp.^2 + Dvxp.^2 - tp.^2);    fep = 1/2*(rp'*rp - epsilon^2);    fp = sum(tp) - (1/tau)*(sum(log(-ftp)) + log(-fep));    flin = f + alpha*s*(gradf'*[dx; dt]);    backiter = backiter + 1;    if (backiter > 32)      disp('Stuck on backtracking line search, returning previous iterate.');      xp = x;  tp = t;      return    end  end    % set up for next iteration  x = xp; t = tp;  r = rp;  Dvx = Dvxp;  Dhx = Dhxp;   ft = ftp; fe = fep; f = fp;    lambda2 = -(gradf'*[dx; dt]);  stepsize = s*norm([dx; dt]);  niter = niter + 1;  done = (lambda2/2 < newtontol) | (niter >= newtonmaxiter);    disp(sprintf('Newton iter = %d, Functional = %8.3f, Newton decrement = %8.3f, Stepsize = %8.3e, Cone iterations = %d, Backtrack iterations = %d', ...    niter, f, lambda2/2, stepsize, coneiter, backiter));  if (largescale)    disp(sprintf('                  CG Res = %8.3e, CG Iter = %d', cgres, cgiter));  else    disp(sprintf('                  H11p condition number = %8.3e', hcond));  end end%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% H11p auxiliary functionfunction y = H11p(v, A, At, Dh, Dv, Dhx, Dvx, sigb, ft, fe, atr)Dhv = Dh*v;Dvv = Dv*v;y = Dh'*((-1./ft + sigb.*Dhx.^2).*Dhv + sigb.*Dhx.*Dvx.*Dvv) + ...  Dv'*((-1./ft + sigb.*Dvx.^2).*Dvv + sigb.*Dhx.*Dvx.*Dhv) - ...  1/fe*At(A(v)) + 1/fe^2*(atr'*v)*atr;  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -