⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 tvdantzig_newton.m

📁 基于内点法的解l2_l1和l2_TV优化问题的matlab代码
💻 M
字号:
% tvdantzig_newton.m%% Newton iterations for TV Dantzig log-barrier subproblem.%% Usage : [xp, tp, niter] = tvdantzig_newton(x0, t0, A, At, b, epsilon, tau, %                                          newtontol, newtonmaxiter, cgtol, cgmaxiter)%% x0,t0 - Nx1 vectors, initial points.%% A - Either a handle to a function that takes a N vector and returns a K %     vector , or a KxN matrix.  If A is a function handle, the algorithm%     operates in "largescale" mode, solving the Newton systems via the%     Conjugate Gradients algorithm.%% At - Handle to a function that takes a K vector and returns an N vector.%      If A is a KxN matrix, At is ignored.%% b - Kx1 vector of observations.%% epsilon - scalar, constraint relaxation parameter%% tau - Log barrier parameter.%% newtontol - Terminate when the Newton decrement is <= newtontol.%% newtonmaxiter - Maximum number of iterations.%% cgtol - Tolerance for Conjugate Gradients; ignored if A is a matrix.%% cgmaxiter - Maximum number of iterations for Conjugate Gradients; ignored%     if A is a matrix.%% Written by: Justin Romberg, Caltech% Email: jrom@acm.caltech.edu% Created: October 2005%function [xp, tp, niter] = tvdantzig_newton(x0, t0, A, At, b, epsilon, tau, newtontol, newtonmaxiter, cgtol, cgmaxiter) largescale = isa(A,'function_handle'); alpha = 0.01;beta = 0.5;  N = length(x0);n = round(sqrt(N));% create (sparse) differencing matrices for TVDv = spdiags([reshape([-ones(n-1,n); zeros(1,n)],N,1) ...  reshape([zeros(1,n); ones(n-1,n)],N,1)], [0 1], N, N);Dh = spdiags([reshape([-ones(n,n-1) zeros(n,1)],N,1) ...  reshape([zeros(n,1) ones(n,n-1)],N,1)], [0 n], N, N);% initial pointx = x0;t = t0;if (largescale)  r = A(x) - b;  Atr = At(r);else    AtA = A'*A;  r = A*x - b;  Atr = A'*r;end  Dhx = Dh*x;  Dvx = Dv*x;ft = 1/2*(Dhx.^2 + Dvx.^2 - t.^2);fe1 = Atr - epsilon;fe2 = -Atr - epsilon;f = sum(t) - (1/tau)*(sum(log(-ft)) + sum(log(-fe1)) + sum(log(-fe2)));niter = 0;done = 0;while (~done)    if (largescale)    ntgx = Dh'*((1./ft).*Dhx) + Dv'*((1./ft).*Dvx) + At(A(1./fe1-1./fe2));  else    ntgx = Dh'*((1./ft).*Dhx) + Dv'*((1./ft).*Dvx) + AtA*(1./fe1-1./fe2);  end  ntgt = -tau - t./ft;  gradf = -(1/tau)*[ntgx; ntgt];    sig22 = 1./ft + (t.^2)./(ft.^2);  sig12 = -t./ft.^2;  sigb = 1./ft.^2 - (sig12.^2)./sig22;  siga = 1./fe1.^2 + 1./fe2.^2;    w11 = ntgx - Dh'*(Dhx.*(sig12./sig22).*ntgt) - Dv'*(Dvx.*(sig12./sig22).*ntgt);  if (largescale)    h11pfun = @(w) H11p(w, A, At, Dh, Dv, Dhx, Dvx, sigb, ft, siga);    [dx, cgres, cgiter] = cgsolve(h11pfun, w11, cgtol, cgmaxiter, 0);    if (cgres > 1/2)      disp('Newton: Cannot solve system.  Returning previous iterate.');      xp = x;  tp = t;      return    end    Adx = A(dx);    AtAdx = At(Adx);  else    H11p =  Dh'*diag(-1./ft + sigb.*Dhx.^2)*Dh + Dv'*diag(-1./ft + sigb.*Dvx.^2)*Dv + ...      Dh'*diag(sigb.*Dhx.*Dvx)*Dv + Dv'*diag(sigb.*Dhx.*Dvx)*Dh + ...      AtA*diag(siga)*AtA;    [dx,hcond] = linsolve(H11p,w11);    if (hcond < 1e-14)      disp('Newton: Matrix ill-conditioned.  Returning previous iterate.');      xp = x;  tp = t;      return    end    Adx = A*dx;    AtAdx = A'*Adx;  end  Dhdx = Dh*dx;  Dvdx = Dv*dx;  dt = (1./sig22).*(ntgt - sig12.*(Dhx.*Dhdx + Dvx.*Dvdx));    % minimum step size that stays in the interior  s = 1;  xp = x + s*dx;  tp = t + s*dt;  rp = r + s*Adx;  Atrp = Atr + s*AtAdx;  Dhxp = Dhx + s*Dhdx;  Dvxp = Dvx + s*Dvdx;  coneiter = 0;  while ( (min(tp - sqrt(Dhxp.^2+Dvxp.^2)) < 0) | ...          (min(epsilon - Atrp) < 0) | ...          (min(epsilon + Atrp) < 0) )    s = beta*s;    xp = x + s*dx;  tp = t + s*dt;    rp = r + s*Adx;  Atrp = Atr + s*AtAdx;    Dhxp = Dhx + s*Dhdx;  Dvxp = Dvx + s*Dvdx;    coneiter = coneiter + 1;    if (coneiter > 32)      disp('Stuck on cone iterations, returning previous iterate.');      xp = x;  tp = t;      return    end       end      % backtracking line search  ftp = 1/2*(Dhxp.^2 + Dvxp.^2 - tp.^2);  fe1p = Atrp - epsilon;  fe2p = -Atrp - epsilon;  fp = sum(tp) - (1/tau)*(sum(log(-ftp)) + sum(log(-fe1p)) + sum(log(-fe2p)));  flin = f + alpha*s*(gradf'*[dx; dt]);  backiter = 0;  while (fp > flin)    s = beta*s;    xp = x + s*dx;  tp = t + s*dt;    rp = r + s*Adx;  Atrp = Atr + s*AtAdx;    Dhxp = Dhx + s*Dhdx;  Dvxp = Dvx + s*Dvdx;    ftp = 1/2*(Dhxp.^2 + Dvxp.^2 - tp.^2);    fe1p = Atrp - epsilon;    fe2p = -Atrp - epsilon;    fp = sum(tp) - (1/tau)*(sum(log(-ftp)) + sum(log(-fe1p)) + sum(log(-fe2p)));    flin = f + alpha*s*(gradf'*[dx; dt]);    backiter = backiter + 1;    if (backiter > 32)      disp('Stuck on backtracking line search, returning previous iterate.');      xp = x;  tp = t;      return    end  end    % set up for next iteration  x = xp; t = tp;  r = rp;  Atr = Atrp;  Dvx = Dvxp;  Dhx = Dhxp;   ft = ftp; fe1 = fe1p; fe2 = fe2p;  f = fp;    lambda2 = -(gradf'*[dx; dt]);  stepsize = s*norm([dx; dt]);  niter = niter + 1;  done = (lambda2/2 < newtontol) | (niter >= newtonmaxiter);    disp(sprintf('Newton iter = %d, Functional = %8.3f, Newton decrement = %8.3f, Stepsize = %8.3e, Cone iterations = %d, Backtrack iterations = %d', ...    niter, f, lambda2/2, stepsize, coneiter, backiter));  if (largescale)    disp(sprintf('                  CG Res = %8.3e, CG Iter = %d', cgres, cgiter));  else    disp(sprintf('                  H11p condition number = %8.3e', hcond));  end      end%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% H11p auxiliary functionfunction y = H11p(v, A, At, Dh, Dv, Dhx, Dvx, sigb, ft, siga)Dhv = Dh*v;Dvv = Dv*v;y = Dh'*((-1./ft + sigb.*Dhx.^2).*Dhv + sigb.*Dhx.*Dvx.*Dvv) + ...  Dv'*((-1./ft + sigb.*Dvx.^2).*Dvv + sigb.*Dhx.*Dvx.*Dhv) + ...  At(A(siga.*At(A(v))));                                                                                                                            

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -