📄 tvdantzig_newton.m
字号:
% tvdantzig_newton.m%% Newton iterations for TV Dantzig log-barrier subproblem.%% Usage : [xp, tp, niter] = tvdantzig_newton(x0, t0, A, At, b, epsilon, tau, % newtontol, newtonmaxiter, cgtol, cgmaxiter)%% x0,t0 - Nx1 vectors, initial points.%% A - Either a handle to a function that takes a N vector and returns a K % vector , or a KxN matrix. If A is a function handle, the algorithm% operates in "largescale" mode, solving the Newton systems via the% Conjugate Gradients algorithm.%% At - Handle to a function that takes a K vector and returns an N vector.% If A is a KxN matrix, At is ignored.%% b - Kx1 vector of observations.%% epsilon - scalar, constraint relaxation parameter%% tau - Log barrier parameter.%% newtontol - Terminate when the Newton decrement is <= newtontol.%% newtonmaxiter - Maximum number of iterations.%% cgtol - Tolerance for Conjugate Gradients; ignored if A is a matrix.%% cgmaxiter - Maximum number of iterations for Conjugate Gradients; ignored% if A is a matrix.%% Written by: Justin Romberg, Caltech% Email: jrom@acm.caltech.edu% Created: October 2005%function [xp, tp, niter] = tvdantzig_newton(x0, t0, A, At, b, epsilon, tau, newtontol, newtonmaxiter, cgtol, cgmaxiter) largescale = isa(A,'function_handle'); alpha = 0.01;beta = 0.5; N = length(x0);n = round(sqrt(N));% create (sparse) differencing matrices for TVDv = spdiags([reshape([-ones(n-1,n); zeros(1,n)],N,1) ... reshape([zeros(1,n); ones(n-1,n)],N,1)], [0 1], N, N);Dh = spdiags([reshape([-ones(n,n-1) zeros(n,1)],N,1) ... reshape([zeros(n,1) ones(n,n-1)],N,1)], [0 n], N, N);% initial pointx = x0;t = t0;if (largescale) r = A(x) - b; Atr = At(r);else AtA = A'*A; r = A*x - b; Atr = A'*r;end Dhx = Dh*x; Dvx = Dv*x;ft = 1/2*(Dhx.^2 + Dvx.^2 - t.^2);fe1 = Atr - epsilon;fe2 = -Atr - epsilon;f = sum(t) - (1/tau)*(sum(log(-ft)) + sum(log(-fe1)) + sum(log(-fe2)));niter = 0;done = 0;while (~done) if (largescale) ntgx = Dh'*((1./ft).*Dhx) + Dv'*((1./ft).*Dvx) + At(A(1./fe1-1./fe2)); else ntgx = Dh'*((1./ft).*Dhx) + Dv'*((1./ft).*Dvx) + AtA*(1./fe1-1./fe2); end ntgt = -tau - t./ft; gradf = -(1/tau)*[ntgx; ntgt]; sig22 = 1./ft + (t.^2)./(ft.^2); sig12 = -t./ft.^2; sigb = 1./ft.^2 - (sig12.^2)./sig22; siga = 1./fe1.^2 + 1./fe2.^2; w11 = ntgx - Dh'*(Dhx.*(sig12./sig22).*ntgt) - Dv'*(Dvx.*(sig12./sig22).*ntgt); if (largescale) h11pfun = @(w) H11p(w, A, At, Dh, Dv, Dhx, Dvx, sigb, ft, siga); [dx, cgres, cgiter] = cgsolve(h11pfun, w11, cgtol, cgmaxiter, 0); if (cgres > 1/2) disp('Newton: Cannot solve system. Returning previous iterate.'); xp = x; tp = t; return end Adx = A(dx); AtAdx = At(Adx); else H11p = Dh'*diag(-1./ft + sigb.*Dhx.^2)*Dh + Dv'*diag(-1./ft + sigb.*Dvx.^2)*Dv + ... Dh'*diag(sigb.*Dhx.*Dvx)*Dv + Dv'*diag(sigb.*Dhx.*Dvx)*Dh + ... AtA*diag(siga)*AtA; [dx,hcond] = linsolve(H11p,w11); if (hcond < 1e-14) disp('Newton: Matrix ill-conditioned. Returning previous iterate.'); xp = x; tp = t; return end Adx = A*dx; AtAdx = A'*Adx; end Dhdx = Dh*dx; Dvdx = Dv*dx; dt = (1./sig22).*(ntgt - sig12.*(Dhx.*Dhdx + Dvx.*Dvdx)); % minimum step size that stays in the interior s = 1; xp = x + s*dx; tp = t + s*dt; rp = r + s*Adx; Atrp = Atr + s*AtAdx; Dhxp = Dhx + s*Dhdx; Dvxp = Dvx + s*Dvdx; coneiter = 0; while ( (min(tp - sqrt(Dhxp.^2+Dvxp.^2)) < 0) | ... (min(epsilon - Atrp) < 0) | ... (min(epsilon + Atrp) < 0) ) s = beta*s; xp = x + s*dx; tp = t + s*dt; rp = r + s*Adx; Atrp = Atr + s*AtAdx; Dhxp = Dhx + s*Dhdx; Dvxp = Dvx + s*Dvdx; coneiter = coneiter + 1; if (coneiter > 32) disp('Stuck on cone iterations, returning previous iterate.'); xp = x; tp = t; return end end % backtracking line search ftp = 1/2*(Dhxp.^2 + Dvxp.^2 - tp.^2); fe1p = Atrp - epsilon; fe2p = -Atrp - epsilon; fp = sum(tp) - (1/tau)*(sum(log(-ftp)) + sum(log(-fe1p)) + sum(log(-fe2p))); flin = f + alpha*s*(gradf'*[dx; dt]); backiter = 0; while (fp > flin) s = beta*s; xp = x + s*dx; tp = t + s*dt; rp = r + s*Adx; Atrp = Atr + s*AtAdx; Dhxp = Dhx + s*Dhdx; Dvxp = Dvx + s*Dvdx; ftp = 1/2*(Dhxp.^2 + Dvxp.^2 - tp.^2); fe1p = Atrp - epsilon; fe2p = -Atrp - epsilon; fp = sum(tp) - (1/tau)*(sum(log(-ftp)) + sum(log(-fe1p)) + sum(log(-fe2p))); flin = f + alpha*s*(gradf'*[dx; dt]); backiter = backiter + 1; if (backiter > 32) disp('Stuck on backtracking line search, returning previous iterate.'); xp = x; tp = t; return end end % set up for next iteration x = xp; t = tp; r = rp; Atr = Atrp; Dvx = Dvxp; Dhx = Dhxp; ft = ftp; fe1 = fe1p; fe2 = fe2p; f = fp; lambda2 = -(gradf'*[dx; dt]); stepsize = s*norm([dx; dt]); niter = niter + 1; done = (lambda2/2 < newtontol) | (niter >= newtonmaxiter); disp(sprintf('Newton iter = %d, Functional = %8.3f, Newton decrement = %8.3f, Stepsize = %8.3e, Cone iterations = %d, Backtrack iterations = %d', ... niter, f, lambda2/2, stepsize, coneiter, backiter)); if (largescale) disp(sprintf(' CG Res = %8.3e, CG Iter = %d', cgres, cgiter)); else disp(sprintf(' H11p condition number = %8.3e', hcond)); end end%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% H11p auxiliary functionfunction y = H11p(v, A, At, Dh, Dv, Dhx, Dvx, sigb, ft, siga)Dhv = Dh*v;Dvv = Dv*v;y = Dh'*((-1./ft + sigb.*Dhx.^2).*Dhv + sigb.*Dhx.*Dvx.*Dvv) + ... Dv'*((-1./ft + sigb.*Dvx.^2).*Dvv + sigb.*Dhx.*Dvx.*Dhv) + ... At(A(siga.*At(A(v))));
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -