⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 tveq_newton.m

📁 基于内点法的解l2_l1和l2_TV优化问题的matlab代码
💻 M
字号:
% tveq_newton.m%% Newton algorithm for log-barrier subproblems for TV minimization% with equality constraints.%% Usage: % [xp,tp,niter] = tveq_newton(x0, t0, A, At, b, tau, %                             newtontol, newtonmaxiter, slqtol, slqmaxiter)%% x0,t0 - starting points%% A - Either a handle to a function that takes a N vector and returns a K %     vector , or a KxN matrix.  If A is a function handle, the algorithm%     operates in "largescale" mode, solving the Newton systems via the%     Conjugate Gradients algorithm.%% At - Handle to a function that takes a K vector and returns an N vector.%      If A is a KxN matrix, At is ignored.%% b - Kx1 vector of observations.%% tau - Log barrier parameter.%% newtontol - Terminate when the Newton decrement is <= newtontol.%% newtonmaxiter - Maximum number of iterations.%% slqtol - Tolerance for SYMMLQ; ignored if A is a matrix.%% slqmaxiter - Maximum number of iterations for SYMMLQ; ignored%     if A is a matrix.%% Written by: Justin Romberg, Caltech% Email: jrom@acm.caltech.edu% Created: October 2005%function [xp, tp, niter] = tveq_newton(x0, t0, A, At, b, tau, newtontol, newtonmaxiter, slqtol, slqmaxiter) largescale = isa(A,'function_handle'); alpha = 0.01;beta = 0.5;  N = length(x0);n = round(sqrt(N));K = length(b);% create (sparse) differencing matrices for TVDv = spdiags([reshape([-ones(n-1,n); zeros(1,n)],N,1) ...  reshape([zeros(1,n); ones(n-1,n)],N,1)], [0 1], N, N);Dh = spdiags([reshape([-ones(n,n-1) zeros(n,1)],N,1) ...  reshape([zeros(n,1) ones(n,n-1)],N,1)], [0 n], N, N);% auxillary matrices for preconditioningMdv = spdiags([reshape([ones(n-1,n); zeros(1,n)],N,1) ...  reshape([zeros(1,n); ones(n-1,n)],N,1)], [0 1], N, N);Mdh = spdiags([reshape([ones(n,n-1) zeros(n,1)],N,1) ...  reshape([zeros(n,1) ones(n,n-1)],N,1)], [0 n], N, N);Mmd = reshape([ones(n-1,n-1) zeros(n-1,1); zeros(1,n)],N,1);% initial pointx = x0;t = t0;Dhx = Dh*x;  Dvx = Dv*x;ft = 1/2*(Dhx.^2 + Dvx.^2 - t.^2);f = sum(t) - (1/tau)*(sum(log(-ft)));niter = 0;done = 0;while (~done)    ntgx = Dh'*((1./ft).*Dhx) + Dv'*((1./ft).*Dvx);  ntgt = -tau - t./ft;  gradf = -(1/tau)*[ntgx; ntgt];     sig22 = 1./ft + (t.^2)./(ft.^2);  sig12 = -t./ft.^2;  sigb = 1./ft.^2 - (sig12.^2)./sig22;    w1p = ntgx - Dh'*(Dhx.*(sig12./sig22).*ntgt) - Dv'*(Dvx.*(sig12./sig22).*ntgt);  wp = [w1p; zeros(K,1)];  if (largescale)    % diagonal of H11p    dg11p = Mdh'*(-1./ft + sigb.*Dhx.^2) + Mdv'*(-1./ft + sigb.*Dvx.^2) + 2*Mmd.*sigb.*Dhx.*Dvx;    afac = max(dg11p);    hpfun = @(z) Hpeval(z, A, At, Dh, Dv, Dhx, Dvx, sigb, ft, afac);    [dxv,slqflag,slqres,slqiter] = symmlq(hpfun, wp, slqtol, slqmaxiter);  else    H11p =  Dh'*diag(-1./ft + sigb.*Dhx.^2)*Dh + Dv'*diag(-1./ft + sigb.*Dvx.^2)*Dv + ...      Dh'*diag(sigb.*Dhx.*Dvx)*Dv + Dv'*diag(sigb.*Dhx.*Dvx)*Dh;    afac = max(diag(H11p));    Hp = [H11p afac*A'; afac*A zeros(K)];    [dxv, hcond] = linsolve(Hp, wp);  end  dx = dxv(1:N);    Dhdx = Dh*dx;  Dvdx = Dv*dx;  dt = (1./sig22).*(ntgt - sig12.*(Dhx.*Dhdx + Dvx.*Dvdx));    s = 1;  xp = x + s*dx;  tp = t + s*dt;  Dhxp = Dhx + s*Dhdx;  Dvxp = Dvx + s*Dvdx;  coneiter = 0;  while ( max(sqrt(Dhxp.^2+Dvxp.^2)-tp) > 0 )    s = beta*s;    xp = x + s*dx;  tp = t + s*dt;    Dhxp = Dhx + s*Dhdx;  Dvxp = Dvx + s*Dvdx;    coneiter = coneiter + 1;    if (coneiter > 32)      disp('Stuck on cone iterations, returning previous iterate.');      xp = x;  tp = t;      return    end  end    % line search  ftp = 1/2*(Dhxp.^2 + Dvxp.^2 - tp.^2);  fp = sum(tp) - (1/tau)*(sum(log(-ftp)));  flin = f + alpha*s*(gradf'*[dx; dt]);  backiter = 0;  while (fp > flin)    s = beta*s;    xp = x + s*dx;  tp = t + s*dt;    Dhxp = Dhx + s*Dhdx;  Dvxp = Dvx + s*Dvdx;    ftp = 1/2*(Dhxp.^2 + Dvxp.^2 - tp.^2);    fp = sum(tp) - (1/tau)*(sum(log(-ftp)));    flin = f + alpha*s*(gradf'*[dx; dt]);    backiter = backiter + 1;    if (backiter > 32)      disp('Stuck on backtracking line search, returning previous iterate.');      xp = x;  tp = t;      return    end  end    % set up for next iteration  x = xp; t = tp;  Dvx = Dvxp;  Dhx = Dhxp;   ft = ftp; f = fp;    lambda2 = -(gradf'*[dx; dt]);  stepsize = s*norm([dx; dt]);  niter = niter + 1;  done = (lambda2/2 < newtontol) | (niter >= newtonmaxiter);  disp(sprintf('Newton iter = %d, Functional = %8.3f, Newton decrement = %8.3f, Stepsize = %8.3e, Cone iterations = %d, Backtrack iterations = %d', ...    niter, f, lambda2/2, stepsize, coneiter, backiter));  if (largescale)    disp(sprintf('                  SYMMLQ Res = %8.3e, SYMMLQ Iter = %d', slqres, slqiter));  else    disp(sprintf('                  H11p condition number = %8.3e', hcond));  end    end%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Implicit application of Hessianfunction y = Hpeval(z, A, At, Dh, Dv, Dhx, Dvx, sigb, ft, afac)N = length(ft);K = length(z)-N;w = z(1:N);v = z(N+1:N+K);Dhw = Dh*w;Dvw = Dv*w;y1 = Dh'*((-1./ft + sigb.*Dhx.^2).*Dhw + sigb.*Dhx.*Dvx.*Dvw) + ...  Dv'*((-1./ft + sigb.*Dvx.^2).*Dvw + sigb.*Dhx.*Dvx.*Dhw) + afac*At(v);y2 = afac*A(w);y = [y1; y2];

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -