📄 tveq_newton.m
字号:
% tveq_newton.m%% Newton algorithm for log-barrier subproblems for TV minimization% with equality constraints.%% Usage: % [xp,tp,niter] = tveq_newton(x0, t0, A, At, b, tau, % newtontol, newtonmaxiter, slqtol, slqmaxiter)%% x0,t0 - starting points%% A - Either a handle to a function that takes a N vector and returns a K % vector , or a KxN matrix. If A is a function handle, the algorithm% operates in "largescale" mode, solving the Newton systems via the% Conjugate Gradients algorithm.%% At - Handle to a function that takes a K vector and returns an N vector.% If A is a KxN matrix, At is ignored.%% b - Kx1 vector of observations.%% tau - Log barrier parameter.%% newtontol - Terminate when the Newton decrement is <= newtontol.%% newtonmaxiter - Maximum number of iterations.%% slqtol - Tolerance for SYMMLQ; ignored if A is a matrix.%% slqmaxiter - Maximum number of iterations for SYMMLQ; ignored% if A is a matrix.%% Written by: Justin Romberg, Caltech% Email: jrom@acm.caltech.edu% Created: October 2005%function [xp, tp, niter] = tveq_newton(x0, t0, A, At, b, tau, newtontol, newtonmaxiter, slqtol, slqmaxiter) largescale = isa(A,'function_handle'); alpha = 0.01;beta = 0.5; N = length(x0);n = round(sqrt(N));K = length(b);% create (sparse) differencing matrices for TVDv = spdiags([reshape([-ones(n-1,n); zeros(1,n)],N,1) ... reshape([zeros(1,n); ones(n-1,n)],N,1)], [0 1], N, N);Dh = spdiags([reshape([-ones(n,n-1) zeros(n,1)],N,1) ... reshape([zeros(n,1) ones(n,n-1)],N,1)], [0 n], N, N);% auxillary matrices for preconditioningMdv = spdiags([reshape([ones(n-1,n); zeros(1,n)],N,1) ... reshape([zeros(1,n); ones(n-1,n)],N,1)], [0 1], N, N);Mdh = spdiags([reshape([ones(n,n-1) zeros(n,1)],N,1) ... reshape([zeros(n,1) ones(n,n-1)],N,1)], [0 n], N, N);Mmd = reshape([ones(n-1,n-1) zeros(n-1,1); zeros(1,n)],N,1);% initial pointx = x0;t = t0;Dhx = Dh*x; Dvx = Dv*x;ft = 1/2*(Dhx.^2 + Dvx.^2 - t.^2);f = sum(t) - (1/tau)*(sum(log(-ft)));niter = 0;done = 0;while (~done) ntgx = Dh'*((1./ft).*Dhx) + Dv'*((1./ft).*Dvx); ntgt = -tau - t./ft; gradf = -(1/tau)*[ntgx; ntgt]; sig22 = 1./ft + (t.^2)./(ft.^2); sig12 = -t./ft.^2; sigb = 1./ft.^2 - (sig12.^2)./sig22; w1p = ntgx - Dh'*(Dhx.*(sig12./sig22).*ntgt) - Dv'*(Dvx.*(sig12./sig22).*ntgt); wp = [w1p; zeros(K,1)]; if (largescale) % diagonal of H11p dg11p = Mdh'*(-1./ft + sigb.*Dhx.^2) + Mdv'*(-1./ft + sigb.*Dvx.^2) + 2*Mmd.*sigb.*Dhx.*Dvx; afac = max(dg11p); hpfun = @(z) Hpeval(z, A, At, Dh, Dv, Dhx, Dvx, sigb, ft, afac); [dxv,slqflag,slqres,slqiter] = symmlq(hpfun, wp, slqtol, slqmaxiter); else H11p = Dh'*diag(-1./ft + sigb.*Dhx.^2)*Dh + Dv'*diag(-1./ft + sigb.*Dvx.^2)*Dv + ... Dh'*diag(sigb.*Dhx.*Dvx)*Dv + Dv'*diag(sigb.*Dhx.*Dvx)*Dh; afac = max(diag(H11p)); Hp = [H11p afac*A'; afac*A zeros(K)]; [dxv, hcond] = linsolve(Hp, wp); end dx = dxv(1:N); Dhdx = Dh*dx; Dvdx = Dv*dx; dt = (1./sig22).*(ntgt - sig12.*(Dhx.*Dhdx + Dvx.*Dvdx)); s = 1; xp = x + s*dx; tp = t + s*dt; Dhxp = Dhx + s*Dhdx; Dvxp = Dvx + s*Dvdx; coneiter = 0; while ( max(sqrt(Dhxp.^2+Dvxp.^2)-tp) > 0 ) s = beta*s; xp = x + s*dx; tp = t + s*dt; Dhxp = Dhx + s*Dhdx; Dvxp = Dvx + s*Dvdx; coneiter = coneiter + 1; if (coneiter > 32) disp('Stuck on cone iterations, returning previous iterate.'); xp = x; tp = t; return end end % line search ftp = 1/2*(Dhxp.^2 + Dvxp.^2 - tp.^2); fp = sum(tp) - (1/tau)*(sum(log(-ftp))); flin = f + alpha*s*(gradf'*[dx; dt]); backiter = 0; while (fp > flin) s = beta*s; xp = x + s*dx; tp = t + s*dt; Dhxp = Dhx + s*Dhdx; Dvxp = Dvx + s*Dvdx; ftp = 1/2*(Dhxp.^2 + Dvxp.^2 - tp.^2); fp = sum(tp) - (1/tau)*(sum(log(-ftp))); flin = f + alpha*s*(gradf'*[dx; dt]); backiter = backiter + 1; if (backiter > 32) disp('Stuck on backtracking line search, returning previous iterate.'); xp = x; tp = t; return end end % set up for next iteration x = xp; t = tp; Dvx = Dvxp; Dhx = Dhxp; ft = ftp; f = fp; lambda2 = -(gradf'*[dx; dt]); stepsize = s*norm([dx; dt]); niter = niter + 1; done = (lambda2/2 < newtontol) | (niter >= newtonmaxiter); disp(sprintf('Newton iter = %d, Functional = %8.3f, Newton decrement = %8.3f, Stepsize = %8.3e, Cone iterations = %d, Backtrack iterations = %d', ... niter, f, lambda2/2, stepsize, coneiter, backiter)); if (largescale) disp(sprintf(' SYMMLQ Res = %8.3e, SYMMLQ Iter = %d', slqres, slqiter)); else disp(sprintf(' H11p condition number = %8.3e', hcond)); end end%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Implicit application of Hessianfunction y = Hpeval(z, A, At, Dh, Dv, Dhx, Dvx, sigb, ft, afac)N = length(ft);K = length(z)-N;w = z(1:N);v = z(N+1:N+K);Dhw = Dh*w;Dvw = Dv*w;y1 = Dh'*((-1./ft + sigb.*Dhx.^2).*Dhw + sigb.*Dhx.*Dvx.*Dvw) + ... Dv'*((-1./ft + sigb.*Dvx.^2).*Dvw + sigb.*Dhx.*Dvx.*Dhw) + afac*At(v);y2 = afac*A(w);y = [y1; y2];
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -