📄 dsymv.f
字号:
SUBROUTINE DSYMV ( UPLO, N, ALPHA, A, LDA, X, INCX, $ BETA, Y, INCY )! ---------------------------------------------------------------------- Use numerics Implicit None* .. Scalar Arguments .. Real(l_) ALPHA, BETA INTEGER INCX, INCY, LDA, N CHARACTER*1 UPLO* .. Array Arguments .. Real(l_) A( LDA, * ), X( * ), Y( * )* ..** Purpose* =======** DSYMV performs the matrix-vector operation** y := alpha*A*x + beta*y,** where alpha and beta are scalars, x and y are n element vectors and* A is an n by n symmetric matrix.** Parameters* ==========** UPLO - CHARACTER*1.* On entry, UPLO specifies whether the upper or lower* triangular part of the array A is to be referenced as* follows:** UPLO = 'U' or 'u' Only the upper triangular part of A* is to be referenced.** UPLO = 'L' or 'l' Only the lower triangular part of A* is to be referenced.** Unchanged on exit.** N - INTEGER.* On entry, N specifies the order of the matrix A.* N must be at least zero.* Unchanged on exit.** ALPHA - Real(l_).* On entry, ALPHA specifies the scalar alpha.* Unchanged on exit.** A - Real(l_) array of DIMENSION ( LDA, n ).* Before entry with UPLO = 'U' or 'u', the leading n by n* upper triangular part of the array A must contain the upper* triangular part of the symmetric matrix and the strictly* lower triangular part of A is not referenced.* Before entry with UPLO = 'L' or 'l', the leading n by n* lower triangular part of the array A must contain the lower* triangular part of the symmetric matrix and the strictly* upper triangular part of A is not referenced.* Unchanged on exit.** LDA - INTEGER.* On entry, LDA specifies the first dimension of A as declared* in the calling (sub) program. LDA must be at least* max( 1, n ).* Unchanged on exit.** X - Real(l_) array of dimension at least* ( 1 + ( n - 1 )*abs( INCX ) ).* Before entry, the incremented array X must contain the n* element vector x.* Unchanged on exit.** INCX - INTEGER.* On entry, INCX specifies the increment for the elements of* X. INCX must not be zero.* Unchanged on exit.** BETA - Real(l_).* On entry, BETA specifies the scalar beta. When BETA is* supplied as zero then Y need not be set on input.* Unchanged on exit.** Y - Real(l_) array of dimension at least* ( 1 + ( n - 1 )*abs( INCY ) ).* Before entry, the incremented array Y must contain the n* element vector y. On exit, Y is overwritten by the updated* vector y.** INCY - INTEGER.* On entry, INCY specifies the increment for the elements of* Y. INCY must not be zero.* Unchanged on exit.*** Level 2 Blas routine.** -- Written on 22-October-1986.* Jack Dongarra, Argonne National Lab.* Jeremy Du Croz, Nag Central Office.* Sven Hammarling, Nag Central Office.* Richard Hanson, Sandia National Labs.*** .. Parameters .. Real(l_) ONE , ZERO PARAMETER ( ONE = 1.0_l_, ZERO = 0.0_l_ )* .. Local Scalars .. Real(l_) TEMP1, TEMP2 INTEGER I, INFO, IX, IY, J, JX, JY, KX, KY* .. External Functions .. LOGICAL LSAME EXTERNAL LSAME* .. External Subroutines .. EXTERNAL XERBLA* .. Intrinsic Functions .. INTRINSIC MAX* ..* .. Executable Statements ..** Test the input parameters.* INFO = 0 IF ( .NOT.LSAME( UPLO, 'U' ).AND. $ .NOT.LSAME( UPLO, 'L' ) )THEN INFO = 1 ELSE IF( N.LT.0 )THEN INFO = 2 ELSE IF( LDA.LT.MAX( 1, N ) )THEN INFO = 5 ELSE IF( INCX.EQ.0 )THEN INFO = 7 ELSE IF( INCY.EQ.0 )THEN INFO = 10 END IF IF( INFO.NE.0 )THEN CALL XERBLA( 'DSYMV ', INFO ) RETURN END IF** Quick return if possible.* IF( ( N.EQ.0 ).OR.( ( ALPHA.EQ.ZERO ).AND.( BETA.EQ.ONE ) ) ) $ RETURN** Set up the start points in X and Y.* IF( INCX.GT.0 )THEN KX = 1 ELSE KX = 1 - ( N - 1 )*INCX END IF IF( INCY.GT.0 )THEN KY = 1 ELSE KY = 1 - ( N - 1 )*INCY END IF** Start the operations. In this version the elements of A are* accessed sequentially with one pass through the triangular part* of A.** First form y := beta*y.* IF( BETA.NE.ONE )THEN IF( INCY.EQ.1 )THEN IF( BETA.EQ.ZERO )THEN DO 10, I = 1, N Y( I ) = ZERO 10 CONTINUE ELSE DO 20, I = 1, N Y( I ) = BETA*Y( I ) 20 CONTINUE END IF ELSE IY = KY IF( BETA.EQ.ZERO )THEN DO 30, I = 1, N Y( IY ) = ZERO IY = IY + INCY 30 CONTINUE ELSE DO 40, I = 1, N Y( IY ) = BETA*Y( IY ) IY = IY + INCY 40 CONTINUE END IF END IF END IF IF( ALPHA.EQ.ZERO ) $ RETURN IF( LSAME( UPLO, 'U' ) )THEN** Form y when A is stored in upper triangle.* IF( ( INCX.EQ.1 ).AND.( INCY.EQ.1 ) )THEN DO 60, J = 1, N TEMP1 = ALPHA*X( J ) TEMP2 = ZERO DO 50, I = 1, J - 1 Y( I ) = Y( I ) + TEMP1*A( I, J ) TEMP2 = TEMP2 + A( I, J )*X( I ) 50 CONTINUE Y( J ) = Y( J ) + TEMP1*A( J, J ) + ALPHA*TEMP2 60 CONTINUE ELSE JX = KX JY = KY DO 80, J = 1, N TEMP1 = ALPHA*X( JX ) TEMP2 = ZERO IX = KX IY = KY DO 70, I = 1, J - 1 Y( IY ) = Y( IY ) + TEMP1*A( I, J ) TEMP2 = TEMP2 + A( I, J )*X( IX ) IX = IX + INCX IY = IY + INCY 70 CONTINUE Y( JY ) = Y( JY ) + TEMP1*A( J, J ) + ALPHA*TEMP2 JX = JX + INCX JY = JY + INCY 80 CONTINUE END IF ELSE** Form y when A is stored in lower triangle.* IF( ( INCX.EQ.1 ).AND.( INCY.EQ.1 ) )THEN DO 100, J = 1, N TEMP1 = ALPHA*X( J ) TEMP2 = ZERO Y( J ) = Y( J ) + TEMP1*A( J, J ) DO 90, I = J + 1, N Y( I ) = Y( I ) + TEMP1*A( I, J ) TEMP2 = TEMP2 + A( I, J )*X( I ) 90 CONTINUE Y( J ) = Y( J ) + ALPHA*TEMP2 100 CONTINUE ELSE JX = KX JY = KY DO 120, J = 1, N TEMP1 = ALPHA*X( JX ) TEMP2 = ZERO Y( JY ) = Y( JY ) + TEMP1*A( J, J ) IX = JX IY = JY DO 110, I = J + 1, N IX = IX + INCX IY = IY + INCY Y( IY ) = Y( IY ) + TEMP1*A( I, J ) TEMP2 = TEMP2 + A( I, J )*X( IX ) 110 CONTINUE Y( JY ) = Y( JY ) + ALPHA*TEMP2 JX = JX + INCX JY = JY + INCY 120 CONTINUE END IF END IF* RETURN** End of DSYMV .* END
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -