⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 dsyr2k.f

📁 网络带宽测试工具
💻 F
字号:
      SUBROUTINE DSYR2K( UPLO, TRANS, N, K, ALPHA, A, LDA, B, LDB,     $                   BETA, C, LDC )! ----------------------------------------------------------------------      Use      numerics      Implicit None*     .. Scalar Arguments ..      CHARACTER*1        UPLO, TRANS      INTEGER            N, K, LDA, LDB, LDC      DOUBLE PRECISION   ALPHA, BETA*     .. Array Arguments ..      DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), C( LDC, * )*     ..**  Purpose*  =======**  DSYR2K  performs one of the symmetric rank 2k operations**     C := alpha*A*B' + alpha*B*A' + beta*C,**  or**     C := alpha*A'*B + alpha*B'*A + beta*C,**  where  alpha and beta  are scalars, C is an  n by n  symmetric matrix*  and  A and B  are  n by k  matrices  in the  first  case  and  k by n*  matrices in the second case.**  Parameters*  ==========**  UPLO   - CHARACTER*1.*           On  entry,   UPLO  specifies  whether  the  upper  or  lower*           triangular  part  of the  array  C  is to be  referenced  as*           follows:**              UPLO = 'U' or 'u'   Only the  upper triangular part of  C*                                  is to be referenced.**              UPLO = 'L' or 'l'   Only the  lower triangular part of  C*                                  is to be referenced.**           Unchanged on exit.**  TRANS  - CHARACTER*1.*           On entry,  TRANS  specifies the operation to be performed as*           follows:**              TRANS = 'N' or 'n'   C := alpha*A*B' + alpha*B*A' +*                                        beta*C.**              TRANS = 'T' or 't'   C := alpha*A'*B + alpha*B'*A +*                                        beta*C.**              TRANS = 'C' or 'c'   C := alpha*A'*B + alpha*B'*A +*                                        beta*C.**           Unchanged on exit.**  N      - INTEGER.*           On entry,  N specifies the order of the matrix C.  N must be*           at least zero.*           Unchanged on exit.**  K      - INTEGER.*           On entry with  TRANS = 'N' or 'n',  K  specifies  the number*           of  columns  of the  matrices  A and B,  and on  entry  with*           TRANS = 'T' or 't' or 'C' or 'c',  K  specifies  the  number*           of rows of the matrices  A and B.  K must be at least  zero.*           Unchanged on exit.**  ALPHA  - DOUBLE PRECISION.*           On entry, ALPHA specifies the scalar alpha.*           Unchanged on exit.**  A      - DOUBLE PRECISION array of DIMENSION ( LDA, ka ), where ka is*           k  when  TRANS = 'N' or 'n',  and is  n  otherwise.*           Before entry with  TRANS = 'N' or 'n',  the  leading  n by k*           part of the array  A  must contain the matrix  A,  otherwise*           the leading  k by n  part of the array  A  must contain  the*           matrix A.*           Unchanged on exit.**  LDA    - INTEGER.*           On entry, LDA specifies the first dimension of A as declared*           in  the  calling  (sub)  program.   When  TRANS = 'N' or 'n'*           then  LDA must be at least  max( 1, n ), otherwise  LDA must*           be at least  max( 1, k ).*           Unchanged on exit.**  B      - DOUBLE PRECISION array of DIMENSION ( LDB, kb ), where kb is*           k  when  TRANS = 'N' or 'n',  and is  n  otherwise.*           Before entry with  TRANS = 'N' or 'n',  the  leading  n by k*           part of the array  B  must contain the matrix  B,  otherwise*           the leading  k by n  part of the array  B  must contain  the*           matrix B.*           Unchanged on exit.**  LDB    - INTEGER.*           On entry, LDB specifies the first dimension of B as declared*           in  the  calling  (sub)  program.   When  TRANS = 'N' or 'n'*           then  LDB must be at least  max( 1, n ), otherwise  LDB must*           be at least  max( 1, k ).*           Unchanged on exit.**  BETA   - DOUBLE PRECISION.*           On entry, BETA specifies the scalar beta.*           Unchanged on exit.**  C      - DOUBLE PRECISION array of DIMENSION ( LDC, n ).*           Before entry  with  UPLO = 'U' or 'u',  the leading  n by n*           upper triangular part of the array C must contain the upper*           triangular part  of the  symmetric matrix  and the strictly*           lower triangular part of C is not referenced.  On exit, the*           upper triangular part of the array  C is overwritten by the*           upper triangular part of the updated matrix.*           Before entry  with  UPLO = 'L' or 'l',  the leading  n by n*           lower triangular part of the array C must contain the lower*           triangular part  of the  symmetric matrix  and the strictly*           upper triangular part of C is not referenced.  On exit, the*           lower triangular part of the array  C is overwritten by the*           lower triangular part of the updated matrix.**  LDC    - INTEGER.*           On entry, LDC specifies the first dimension of C as declared*           in  the  calling  (sub)  program.   LDC  must  be  at  least*           max( 1, n ).*           Unchanged on exit.***  Level 3 Blas routine.***  -- Written on 8-February-1989.*     Jack Dongarra, Argonne National Laboratory.*     Iain Duff, AERE Harwell.*     Jeremy Du Croz, Numerical Algorithms Group Ltd.*     Sven Hammarling, Numerical Algorithms Group Ltd.***     .. External Functions ..      LOGICAL            LSAME      EXTERNAL           LSAME*     .. External Subroutines ..      EXTERNAL           XERBLA*     .. Intrinsic Functions ..      INTRINSIC          MAX*     .. Local Scalars ..      LOGICAL            UPPER      INTEGER            I, INFO, J, L, NROWA      DOUBLE PRECISION   TEMP1, TEMP2*     .. Parameters ..      DOUBLE PRECISION   ONE         , ZERO      PARAMETER        ( ONE = 1.0_l_, ZERO = 0.0_l_ )*     ..*     .. Executable Statements ..**     Test the input parameters.*      IF( LSAME( TRANS, 'N' ) )THEN         NROWA = N      ELSE         NROWA = K      END IF      UPPER = LSAME( UPLO, 'U' )*      INFO = 0      IF(      ( .NOT.UPPER               ).AND.     $         ( .NOT.LSAME( UPLO , 'L' ) )      )THEN         INFO = 1      ELSE IF( ( .NOT.LSAME( TRANS, 'N' ) ).AND.     $         ( .NOT.LSAME( TRANS, 'T' ) ).AND.     $         ( .NOT.LSAME( TRANS, 'C' ) )      )THEN         INFO = 2      ELSE IF( N  .LT.0               )THEN         INFO = 3      ELSE IF( K  .LT.0               )THEN         INFO = 4      ELSE IF( LDA.LT.MAX( 1, NROWA ) )THEN         INFO = 7      ELSE IF( LDB.LT.MAX( 1, NROWA ) )THEN         INFO = 9      ELSE IF( LDC.LT.MAX( 1, N     ) )THEN         INFO = 12      END IF      IF( INFO.NE.0 )THEN         CALL XERBLA( 'DSYR2K', INFO )         RETURN      END IF**     Quick return if possible.*      IF( ( N.EQ.0 ).OR.     $    ( ( ( ALPHA.EQ.ZERO ).OR.( K.EQ.0 ) ).AND.( BETA.EQ.ONE ) ) )     $   RETURN**     And when  alpha.eq.zero.*      IF( ALPHA.EQ.ZERO )THEN         IF( UPPER )THEN            IF( BETA.EQ.ZERO )THEN               DO 20, J = 1, N                  DO 10, I = 1, J                     C( I, J ) = ZERO   10             CONTINUE   20          CONTINUE            ELSE               DO 40, J = 1, N                  DO 30, I = 1, J                     C( I, J ) = BETA*C( I, J )   30             CONTINUE   40          CONTINUE            END IF         ELSE            IF( BETA.EQ.ZERO )THEN               DO 60, J = 1, N                  DO 50, I = J, N                     C( I, J ) = ZERO   50             CONTINUE   60          CONTINUE            ELSE               DO 80, J = 1, N                  DO 70, I = J, N                     C( I, J ) = BETA*C( I, J )   70             CONTINUE   80          CONTINUE            END IF         END IF         RETURN      END IF**     Start the operations.*      IF( LSAME( TRANS, 'N' ) )THEN**        Form  C := alpha*A*B' + alpha*B*A' + C.*         IF( UPPER )THEN            DO 130, J = 1, N               IF( BETA.EQ.ZERO )THEN                  DO 90, I = 1, J                     C( I, J ) = ZERO   90             CONTINUE               ELSE IF( BETA.NE.ONE )THEN                  DO 100, I = 1, J                     C( I, J ) = BETA*C( I, J )  100             CONTINUE               END IF               DO 120, L = 1, K                  IF( ( A( J, L ).NE.ZERO ).OR.     $                ( B( J, L ).NE.ZERO )     )THEN                     TEMP1 = ALPHA*B( J, L )                     TEMP2 = ALPHA*A( J, L )                     DO 110, I = 1, J                        C( I, J ) = C( I, J ) +     $                              A( I, L )*TEMP1 + B( I, L )*TEMP2  110                CONTINUE                  END IF  120          CONTINUE  130       CONTINUE         ELSE            DO 180, J = 1, N               IF( BETA.EQ.ZERO )THEN                  DO 140, I = J, N                     C( I, J ) = ZERO  140             CONTINUE               ELSE IF( BETA.NE.ONE )THEN                  DO 150, I = J, N                     C( I, J ) = BETA*C( I, J )  150             CONTINUE               END IF               DO 170, L = 1, K                  IF( ( A( J, L ).NE.ZERO ).OR.     $                ( B( J, L ).NE.ZERO )     )THEN                     TEMP1 = ALPHA*B( J, L )                     TEMP2 = ALPHA*A( J, L )                     DO 160, I = J, N                        C( I, J ) = C( I, J ) +     $                              A( I, L )*TEMP1 + B( I, L )*TEMP2  160                CONTINUE                  END IF  170          CONTINUE  180       CONTINUE         END IF      ELSE**        Form  C := alpha*A'*B + alpha*B'*A + C.*         IF( UPPER )THEN            DO 210, J = 1, N               DO 200, I = 1, J                  TEMP1 = ZERO                  TEMP2 = ZERO                  DO 190, L = 1, K                     TEMP1 = TEMP1 + A( L, I )*B( L, J )                     TEMP2 = TEMP2 + B( L, I )*A( L, J )  190             CONTINUE                  IF( BETA.EQ.ZERO )THEN                     C( I, J ) = ALPHA*TEMP1 + ALPHA*TEMP2                  ELSE                     C( I, J ) = BETA *C( I, J ) +     $                           ALPHA*TEMP1 + ALPHA*TEMP2                  END IF  200          CONTINUE  210       CONTINUE         ELSE            DO 240, J = 1, N               DO 230, I = J, N                  TEMP1 = ZERO                  TEMP2 = ZERO                  DO 220, L = 1, K                     TEMP1 = TEMP1 + A( L, I )*B( L, J )                     TEMP2 = TEMP2 + B( L, I )*A( L, J )  220             CONTINUE                  IF( BETA.EQ.ZERO )THEN                     C( I, J ) = ALPHA*TEMP1 + ALPHA*TEMP2                  ELSE                     C( I, J ) = BETA *C( I, J ) +     $                           ALPHA*TEMP1 + ALPHA*TEMP2                  END IF  230          CONTINUE  240       CONTINUE         END IF      END IF*      RETURN**     End of DSYR2K.*      END

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -