⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 dsyevd.f

📁 网络带宽测试工具
💻 F
📖 第 1 页 / 共 5 页
字号:
**     Calculate the allowable deflation tolerance*      IMAX = IDAMAX( N, Z, 1 )      JMAX = IDAMAX( N, D, 1 )      EPS = DLAMCH( 'Epsilon' )      TOL = EIGHT*EPS*MAX( ABS( D( JMAX ) ), ABS( Z( IMAX ) ) )**     If the rank-1 modifier is small enough, no more needs to be done*     except to reorganize Q so that its columns correspond with the*     elements in D.*      IF( RHO*ABS( Z( IMAX ) ).LE.TOL ) THEN         K = 0         DO 70 J = 1, N            CALL DCOPY( N, Q( 1, INDXQ( INDX( J ) ) ), 1, Q2( 1, J ),     $                  1 )   70    CONTINUE         CALL DLACPY( 'A', N, N, Q2, LDQ2, Q, LDQ )         GO TO 180      END IF**     If there are multiple eigenvalues then the problem deflates.  Here*     the number of equal eigenvalues are found.  As each equal*     eigenvalue is found, an elementary reflector is computed to rotate*     the corresponding eigensubspace so that the corresponding*     components of Z are zero in this new basis.*      K = 0      K2 = N + 1      DO 80 J = 1, N         IF( RHO*ABS( Z( J ) ).LE.TOL ) THEN**           Deflate due to small z component.*            K2 = K2 - 1            INDXP( K2 ) = J            COLTYP( J ) = 4            IF( J.EQ.N )     $         GO TO 120         ELSE            JLAM = J            GO TO 90         END IF   80 CONTINUE   90 CONTINUE      J = J + 1      IF( J.GT.N )     $   GO TO 110      IF( RHO*ABS( Z( J ) ).LE.TOL ) THEN**        Deflate due to small z component.*         K2 = K2 - 1         INDXP( K2 ) = J         COLTYP( J ) = 4      ELSE**        Check if eigenvalues are close enough to allow deflation.*         S = Z( JLAM )         C = Z( J )**        Find sqrt(a**2+b**2) without overflow or*        destructive underflow.*         TAU = DLAPY2( C, S )         T = D( J ) - D( JLAM )         C = C / TAU         S = -S / TAU         IF( ABS( T*C*S ).LE.TOL ) THEN**           Deflation is possible.*            Z( J ) = TAU            Z( JLAM ) = ZERO            IF( COLTYP( J ).NE.COLTYP( JLAM ) )     $         COLTYP( J ) = 3            COLTYP( JLAM ) = 4            CALL DROT( N, Q( 1, INDXQ( INDX( JLAM ) ) ), 1,     $                 Q( 1, INDXQ( INDX( J ) ) ), 1, C, S )            T = D( JLAM )*C**2 + D( J )*S**2            D( J ) = D( JLAM )*S**2 + D( J )*C**2            D( JLAM ) = T            K2 = K2 - 1            I = 1  100       CONTINUE            IF( K2+I.LE.N ) THEN               IF( D( JLAM ).LT.D( INDXP( K2+I ) ) ) THEN                  INDXP( K2+I-1 ) = INDXP( K2+I )                  INDXP( K2+I ) = JLAM                  I = I + 1                  GO TO 100               ELSE                  INDXP( K2+I-1 ) = JLAM               END IF            ELSE               INDXP( K2+I-1 ) = JLAM            END IF            JLAM = J         ELSE            K = K + 1            W( K ) = Z( JLAM )            DLAMDA( K ) = D( JLAM )            INDXP( K ) = JLAM            JLAM = J         END IF      END IF      GO TO 90  110 CONTINUE**     Record the last eigenvalue.*      K = K + 1      W( K ) = Z( JLAM )      DLAMDA( K ) = D( JLAM )      INDXP( K ) = JLAM*  120 CONTINUE**     Count up the total number of the various types of columns, then*     form a permutation which positions the four column types into*     four uniform groups (although one or more of these groups may be*     empty).*      DO 130 J = 1, 4         CTOT( J ) = 0  130 CONTINUE      DO 140 J = 1, N         CT = COLTYP( J )         CTOT( CT ) = CTOT( CT ) + 1  140 CONTINUE**     PSM(*) = Position in SubMatrix (of types 1 through 4)*      PSM( 1 ) = 1      PSM( 2 ) = 1 + CTOT( 1 )      PSM( 3 ) = PSM( 2 ) + CTOT( 2 )      PSM( 4 ) = PSM( 3 ) + CTOT( 3 )**     Fill out the INDXC array so that the permutation which it induces*     will place all type-1 columns first, all type-2 columns next,*     then all type-3's, and finally all type-4's.*      DO 150 J = 1, N         JP = INDXP( J )         CT = COLTYP( JP )         INDXC( PSM( CT ) ) = J         PSM( CT ) = PSM( CT ) + 1  150 CONTINUE**     Sort the eigenvalues and corresponding eigenvectors into DLAMDA*     and Q2 respectively.  The eigenvalues/vectors which were not*     deflated go into the first K slots of DLAMDA and Q2 respectively,*     while those which were deflated go into the last N - K slots.*      DO 160 J = 1, N         JP = INDXP( J )         DLAMDA( J ) = D( JP )         CALL DCOPY( N, Q( 1, INDXQ( INDX( INDXP( INDXC( J ) ) ) ) ), 1,     $               Q2( 1, J ), 1 )  160 CONTINUE**     The deflated eigenvalues and their corresponding vectors go back*     into the last N - K slots of D and Q respectively.*      CALL DCOPY( N-K, DLAMDA( K+1 ), 1, D( K+1 ), 1 )      CALL DLACPY( 'A', N, N-K, Q2( 1, K+1 ), LDQ2, Q( 1, K+1 ), LDQ )**     Copy CTOT into COLTYP for referencing in DLAED3.*      DO 170 J = 1, 4         COLTYP( J ) = CTOT( J )  170 CONTINUE*  180 CONTINUE      RETURN**     End of DLAED2*      END! ----------------------------------------------------------------------      SUBROUTINE DLAED3( K, KSTART, KSTOP, N, D, Q, LDQ, RHO, CUTPNT,     $                   DLAMDA, Q2, LDQ2, INDXC, CTOT, W, S, LDS,     $                   INFO )! ----------------------------------------------------------------------      Use      numerics      Implicit None**  -- LAPACK routine (version 2.0) --*     Univ. of Tennessee, Oak Ridge National Lab, Argonne National Lab,*     Courant Institute, NAG Ltd., and Rice University*     September 30, 1994**     .. Scalar Arguments ..      INTEGER            CUTPNT, INFO, K, KSTART, KSTOP, LDQ, LDQ2, LDS,     $                   N      Real(l_)   RHO*     ..*     .. Array Arguments ..      INTEGER            CTOT( * ), INDXC( * )      Real(l_)   D( * ), DLAMDA( * ), Q( LDQ, * ),     $                   Q2( LDQ2, * ), S( LDS, * ), W( * )*     ..**  Purpose*  =======**  DLAED3 finds the roots of the secular equation, as defined by the*  values in D, W, and RHO, between KSTART and KSTOP.  It makes the*  appropriate calls to DLAED4 and then updates the eigenvectors by*  multiplying the matrix of eigenvectors of the pair of eigensystems*  being combined by the matrix of eigenvectors of the K-by-K system*  which is solved here.**  This code makes very mild assumptions about floating point*  arithmetic. It will work on machines with a guard digit in*  add/subtract, or on those binary machines without guard digits*  which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2.*  It could conceivably fail on hexadecimal or decimal machines*  without guard digits, but we know of none.**  Arguments*  =========**  K       (input) INTEGER*          The number of terms in the rational function to be solved by*          DLAED4.  K >= 0.**  KSTART  (input) INTEGER*  KSTOP   (input) INTEGER*          The updated eigenvalues Lambda(I), KSTART <= I <= KSTOP*          are to be computed.  1 <= KSTART <= KSTOP <= K.**  N       (input) INTEGER*          The number of rows and columns in the Q matrix.*          N >= K (deflation may result in N>K).**  D       (output) Real(l_) array, dimension (N)*          D(I) contains the updated eigenvalues for*          KSTART <= I <= KSTOP.**  Q       (output) Real(l_) array, dimension (LDQ,N)*          Initially the first K columns are used as workspace.*          On output the columns KSTART to KSTOP contain*          the updated eigenvectors.**  LDQ     (input) INTEGER*          The leading dimension of the array Q.  LDQ >= max(1,N).**  RHO     (input) Real(l_)*          The value of the parameter in the rank one update equation.*          RHO >= 0 required.**  CUTPNT  (input) INTEGER*          The location of the last eigenvalue in the leading submatrix.*          min(1,N) <= CUTPNT <= N.**  DLAMDA  (input/output) Real(l_) array, dimension (K)*          The first K elements of this array contain the old roots*          of the deflated updating problem.  These are the poles*          of the secular equation. May be changed on output by*          having lowest order bit set to zero on Cray X-MP, Cray Y-MP,*          Cray-2, or Cray C-90, as described above.**  Q2      (input) Real(l_) array, dimension (LDQ2, N)*          The first K columns of this matrix contain the non-deflated*          eigenvectors for the split problem.**  LDQ2    (input) INTEGER*          The leading dimension of the array Q2.  LDQ2 >= max(1,N).**  INDXC   (input) INTEGER array, dimension (N)*          The permutation used to arrange the columns of the deflated*          Q matrix into three groups:  the first group contains*          non-zero elements only at and above CUTPNT, the second*          contains non-zero elements only below CUTPNT, and the third*          is dense.  The rows of the eigenvectors found by DLAED4*          must be likewise permuted before the matrix multiply can take*          place.**  CTOT    (input) INTEGER array, dimension (4)*          A count of the total number of the various types of columns*          in Q, as described in INDXC.  The fourth column type is any*          column which has been deflated.**  W       (input/output) Real(l_) array, dimension (K)*          The first K elements of this array contain the components*          of the deflation-adjusted updating vector. Destroyed on*          output.**  S       (workspace) Real(l_) array, dimension (LDS, K)*          Will contain the eigenvectors of the repaired matrix which*          will be multiplied by the previously accumulated eigenvectors*          to update the system.**  LDS     (input) INTEGER*          The leading dimension of S.  LDS >= max(1,K).**  INFO    (output) INTEGER*          = 0:  successful exit.*          < 0:  if INFO = -i, the i-th argument had an illegal value.*          > 0:  if INFO = 1, an eigenvalue did not converge**  =====================================================================**     .. Parameters ..      Real(l_)   ONE, ZERO      PARAMETER          ( ONE = 1.0_l_, ZERO = 0.0_l_ )*     ..*     .. Local Scalars ..      INTEGER            I, J, JC, KTEMP, PARTS      Real(l_)   TEMP*     ..*     .. External Functions ..      Real(l_)   DLAMC3, DNRM2      EXTERNAL           DLAMC3, DNRM2*     ..*     .. External Subroutines ..      EXTERNAL           DCOPY, DGEMM, DLAED4, DLASET, XERBLA*     ..*     .. Intrinsic Functions ..      INTRINSIC          MAX, SIGN, SQRT*     ..*     .. Executable Statements ..**     Test the input parameters.*      INFO = 0*      IF( K.LT.0 ) THEN         INFO = -1      ELSE IF( KSTART.LT.1 .OR. KSTART.GT.MAX( 1, K ) ) THEN         INFO = -2      ELSE IF( MAX( 1, KSTOP ).LT.KSTART .OR. KSTOP.GT.MAX( 1, K ) )     $          THEN         INFO = -3      ELSE IF( N.LT.K ) THEN         INFO = -4      ELSE IF( LDQ.LT.MAX( 1, N ) ) THEN         INFO = -7      ELSE IF( LDQ2.LT.MAX( 1, N ) ) THEN         INFO = -12      ELSE IF( LDS.LT.MAX( 1, K ) ) THEN         INFO = -17      END IF      IF( INFO.NE.0 ) THEN         CALL XERBLA( 'DLAED3', -INFO )         RETURN      END IF**     Quick return if possible*      IF( K.EQ.0 )     $   RETURN**     Modify values DLAMDA(i) to make sure all DLAMDA(i)-DLAMDA(j) can*     be computed with high relative accuracy (barring over/underflow).*     This is a problem on machines without a guard digit in*     add/subtract (Cray XMP, Cray YMP, Cray C 90 and Cray 2).*     The following code replaces DLAMDA(I) by 2*DLAMDA(I)-DLAMDA(I),*     which on any of these machines zeros out the bottommost*     bit of DLAMDA(I) if it is 1; this makes the subsequent*     subtractions DLAMDA(I)-DLAMDA(J) unproblematic when cancellation*     occurs. On binary machines with a guard digit (almost all*     machines) it does not change DLAMDA(I) at all. On hexadecimal*     and decimal machines with a guard digit, it slightly*     changes the bottommost bits of DLAMDA(I). It does not account*     for hexadecimal or decimal machines without guard digits*     (we know of none). We use a subroutine call to compute*     2*DLAMBDA(I) to prevent optimizing compilers from eliminating*     this code.*      DO 10 I = 1, N         DLAMDA( I ) = DLAMC3( DLAMDA( I ), DLAMDA( I ) ) - DLAMDA( I )   10 CONTINUE*      KTEMP = KSTOP - KSTART + 1      DO 20 J = KSTART, KSTOP         CALL DLAED4( K, J, DLAMDA, W, Q( 1, J ), RHO, D( J ), INFO )**        If the zero finder fails, the computation is terminated.*         IF( INFO.NE.0 )     $      GO TO 130   20 CONTINUE*      IF( K.EQ.1 .OR. K.EQ.2 ) THEN         DO 40 I = 1, K            DO 30 J = 1, K               JC = INDXC( J )               S( J, I ) = Q( JC, I )   30       CONTINUE   40    CONTINUE         GO TO 120      END IF**     Compute updated W.*      CALL DCOPY( K, W, 1, S, 1 )**     Initialize W(I) = Q(I,I)*      CALL DCOPY( K, Q, LDQ+1, W, 1 )      DO 70 J = 1, K         DO 50 I = 1, J - 1            W( I ) = W( I )*( Q( I, J ) / ( DLAMDA( I )-DLAMDA( J ) ) )   50    CONTINUE         DO 60 I = J + 1, K            W( I ) = W( I )*( Q( I, J ) / ( DLAMDA( I )-DLAMDA( J ) ) )

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -