📄 dsyevd.f
字号:
** .. Scalar Arguments .. INTEGER CUTPNT, INFO, LDQ, N Real(l_) RHO* ..* .. Array Arguments .. INTEGER INDXQ( * ), IWORK( * ) Real(l_) D( * ), Q( LDQ, * ), WORK( * )* ..** Purpose* =======** DLAED1 computes the updated eigensystem of a diagonal* matrix after modification by a rank-one symmetric matrix. This* routine is used only for the eigenproblem which requires all* eigenvalues and eigenvectors of a tridiagonal matrix. DLAED7 handles* the case in which eigenvalues only or eigenvalues and eigenvectors* of a full symmetric matrix (which was reduced to tridiagonal form)* are desired.** T = Q(in) ( D(in) + RHO * Z*Z' ) Q'(in) = Q(out) * D(out) * Q'(out)** where Z = Q'u, u is a vector of length N with ones in the* CUTPNT and CUTPNT + 1 th elements and zeros elsewhere.** The eigenvectors of the original matrix are stored in Q, and the* eigenvalues are in D. The algorithm consists of three stages:** The first stage consists of deflating the size of the problem* when there are multiple eigenvalues or if there is a zero in* the Z vector. For each such occurence the dimension of the* secular equation problem is reduced by one. This stage is* performed by the routine DLAED2.** The second stage consists of calculating the updated* eigenvalues. This is done by finding the roots of the secular* equation via the routine DLAED4 (as called by SLAED3).* This routine also calculates the eigenvectors of the current* problem.** The final stage consists of computing the updated eigenvectors* directly using the updated eigenvalues. The eigenvectors for* the current problem are multiplied with the eigenvectors from* the overall problem.** Arguments* =========** N (input) INTEGER* The dimension of the symmetric tridiagonal matrix. N >= 0.** D (input/output) Real(l_) array, dimension (N)* On entry, the eigenvalues of the rank-1-perturbed matrix.* On exit, the eigenvalues of the repaired matrix.** Q (input/output) Real(l_) array, dimension (LDQ,N)* On entry, the eigenvectors of the rank-1-perturbed matrix.* On exit, the eigenvectors of the repaired tridiagonal matrix.** LDQ (input) INTEGER* The leading dimension of the array Q. LDQ >= max(1,N).** INDXQ (input/output) INTEGER array, dimension (N)* On entry, the permutation which separately sorts the two* subproblems in D into ascending order.* On exit, the permutation which will reintegrate the* subproblems back into sorted order,* i.e. D( INDXQ( I = 1, N ) ) will be in ascending order.** RHO (input) Real(l_)* The subdiagonal entry used to create the rank-1 modification.** CUTPNT (input) INTEGER* The location of the last eigenvalue in the leading sub-matrix.* min(1,N) <= CUTPNT <= N.** WORK (workspace) Real(l_) array, dimension (3*N+2*N**2)** IWORK (workspace) INTEGER array, dimension (4*N)** INFO (output) INTEGER* = 0: successful exit.* < 0: if INFO = -i, the i-th argument had an illegal value.* > 0: if INFO = 1, an eigenvalue did not converge** =====================================================================** .. Local Scalars .. INTEGER COLTYP, I, IDLMDA, INDX, INDXC, INDXP, IQ2, IS, $ IW, IZ, K, LDQ2, N1, N2, ZPP1* ..* .. External Subroutines .. EXTERNAL DCOPY, DLAED2, DLAED3, DLAMRG, XERBLA* ..* .. Intrinsic Functions .. INTRINSIC MAX, MIN* ..* .. Executable Statements ..** Test the input parameters.* INFO = 0* IF( N.LT.0 ) THEN INFO = -1 ELSE IF( LDQ.LT.MAX( 1, N ) ) THEN INFO = -4 ELSE IF( MIN( 1, N ).GT.CUTPNT .OR. N.LT.CUTPNT ) THEN INFO = -7 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'DLAED1', -INFO ) RETURN END IF** Quick return if possible* IF( N.EQ.0 ) $ RETURN** The following values are for bookkeeping purposes only. They are* integer pointers which indicate the portion of the workspace* used by a particular array in DLAED2 and SLAED3.* LDQ2 = N* IZ = 1 IDLMDA = IZ + N IW = IDLMDA + N IQ2 = IW + N IS = IQ2 + N*LDQ2* INDX = 1 INDXC = INDX + N COLTYP = INDXC + N INDXP = COLTYP + N*** Form the z-vector which consists of the last row of Q_1 and the* first row of Q_2.* CALL DCOPY( CUTPNT, Q( CUTPNT, 1 ), LDQ, WORK( IZ ), 1 ) ZPP1 = CUTPNT + 1 CALL DCOPY( N-CUTPNT, Q( ZPP1, ZPP1 ), LDQ, WORK( IZ+CUTPNT ), 1 )** Deflate eigenvalues.* CALL DLAED2( K, N, D, Q, LDQ, INDXQ, RHO, CUTPNT, WORK( IZ ), $ WORK( IDLMDA ), WORK( IQ2 ), LDQ2, IWORK( INDXC ), $ WORK( IW ), IWORK( INDXP ), IWORK( INDX ), $ IWORK( COLTYP ), INFO ) IF( INFO.NE.0 ) $ GO TO 20** Solve Secular Equation.* IF( K.NE.0 ) THEN CALL DLAED3( K, 1, K, N, D, Q, LDQ, RHO, CUTPNT, $ WORK( IDLMDA ), WORK( IQ2 ), LDQ2, IWORK( INDXC ), $ IWORK( COLTYP ), WORK( IW ), WORK( IS ), K, INFO ) IF( INFO.NE.0 ) $ GO TO 20** Prepare the INDXQ sorting permutation.* N1 = K N2 = N - K CALL DLAMRG( N1, N2, D, 1, -1, INDXQ ) ELSE DO 10 I = 1, N INDXQ( I ) = I 10 CONTINUE END IF* 20 CONTINUE RETURN** End of DLAED1* END! ---------------------------------------------------------------------- SUBROUTINE DLAED2( K, N, D, Q, LDQ, INDXQ, RHO, CUTPNT, Z, DLAMDA, $ Q2, LDQ2, INDXC, W, INDXP, INDX, COLTYP, INFO )! ---------------------------------------------------------------------- Use numerics Implicit None** -- LAPACK routine (version 2.0) --* Univ. of Tennessee, Oak Ridge National Lab, Argonne National Lab,* Courant Institute, NAG Ltd., and Rice University* September 30, 1994** .. Scalar Arguments .. INTEGER CUTPNT, INFO, K, LDQ, LDQ2, N Real(l_) RHO* ..* .. Array Arguments .. INTEGER COLTYP( * ), INDX( * ), INDXC( * ), INDXP( * ), $ INDXQ( * ) Real(l_) D( * ), DLAMDA( * ), Q( LDQ, * ), $ Q2( LDQ2, * ), W( * ), Z( * )* ..** Purpose* =======** DLAED2 merges the two sets of eigenvalues together into a single* sorted set. Then it tries to deflate the size of the problem.* There are two ways in which deflation can occur: when two or more* eigenvalues are close together or if there is a tiny entry in the* Z vector. For each such occurrence the order of the related secular* equation problem is reduced by one.** Arguments* =========** K (output) INTEGER* The number of non-deflated eigenvalues, and the order of the* related secular equation. 0 <= K <=N.** N (input) INTEGER* The dimension of the symmetric tridiagonal matrix. N >= 0.** D (input/output) Real(l_) array, dimension (N)* On entry, D contains the eigenvalues of the two submatrices to* be combined.* On exit, D contains the trailing (N-K) updated eigenvalues* (those which were deflated) sorted into increasing order.** Q (input/output) Real(l_) array, dimension (LDQ, N)* On entry, Q contains the eigenvectors of two submatrices in* the two square blocks with corners at (1,1), (CUTPNT,CUTPNT)* and (CUTPNT+1, CUTPNT+1), (N,N).* On exit, Q contains the trailing (N-K) updated eigenvectors* (those which were deflated) in its last N-K columns.** LDQ (input) INTEGER* The leading dimension of the array Q. LDQ >= max(1,N).** INDXQ (input/output) INTEGER array, dimension (N)* The permutation which separately sorts the two sub-problems* in D into ascending order. Note that elements in the second* half of this permutation must first have CUTPNT added to their* values. Destroyed on exit.** RHO (input/output) Real(l_)* On entry, the off-diagonal element associated with the rank-1* cut which originally split the two submatrices which are now* being recombined.* On exit, RHO has been modified to the value required by* DLAED3.** CUTPNT (input) INTEGER* The location of the last eigenvalue in the leading sub-matrix.* min(1,N) <= CUTPNT <= N.** Z (input) Real(l_) array, dimension (N)* On entry, Z contains the updating vector (the last* row of the first sub-eigenvector matrix and the first row of* the second sub-eigenvector matrix).* On exit, the contents of Z have been destroyed by the updating* process.** DLAMDA (output) Real(l_) array, dimension (N)* A copy of the first K eigenvalues which will be used by* DLAED3 to form the secular equation.** Q2 (output) Real(l_) array, dimension (LDQ2, N)* A copy of the first K eigenvectors which will be used by* DLAED3 in a matrix multiply (DGEMM) to solve for the new* eigenvectors. Q2 is arranged into three blocks. The* first block contains non-zero elements only at and above* CUTPNT, the second contains non-zero elements only below* CUTPNT, and the third is dense.** LDQ2 (input) INTEGER* The leading dimension of the array Q2. LDQ2 >= max(1,N).** INDXC (output) INTEGER array, dimension (N)* The permutation used to arrange the columns of the deflated* Q matrix into three groups: the first group contains non-zero* elements only at and above CUTPNT, the second contains* non-zero elements only below CUTPNT, and the third is dense.** W (output) Real(l_) array, dimension (N)* The first k values of the final deflation-altered z-vector* which will be passed to DLAED3.** INDXP (workspace) INTEGER array, dimension (N)* The permutation used to place deflated values of D at the end* of the array. INDXP(1:K) points to the nondeflated D-values* and INDXP(K+1:N) points to the deflated eigenvalues.** INDX (workspace) INTEGER array, dimension (N)* The permutation used to sort the contents of D into ascending* order.** COLTYP (workspace/output) INTEGER array, dimension (N)* During execution, a label which will indicate which of the* following types a column in the Q2 matrix is:* 1 : non-zero in the upper half only;* 2 : non-zero in the lower half only;* 3 : dense;* 4 : deflated.* On exit, COLTYP(i) is the number of columns of type i,* for i=1 to 4 only.** INFO (output) INTEGER* = 0: successful exit.* < 0: if INFO = -i, the i-th argument had an illegal value.** =====================================================================** .. Parameters .. Real(l_) MONE, ZERO, ONE, TWO, EIGHT PARAMETER ( MONE = -1.0_l_, ZERO = 0.0_l_, ONE = 1.0_l_, $ TWO = 2.0_l_, EIGHT = 8.0_l_ )* ..* .. Local Arrays .. INTEGER CTOT( 4 ), PSM( 4 )* ..* .. Local Scalars .. INTEGER CT, I, IMAX, J, JLAM, JMAX, JP, K2, N1, N1P1, $ N2 Real(l_) C, EPS, S, T, TAU, TOL* ..* .. External Functions .. INTEGER IDAMAX Real(l_) DLAMCH, DLAPY2 EXTERNAL IDAMAX, DLAMCH, DLAPY2* ..* .. External Subroutines .. EXTERNAL DCOPY, DLACPY, DLAMRG, DROT, DSCAL, XERBLA* ..* .. Intrinsic Functions .. INTRINSIC ABS, MAX, MIN, SQRT* ..* .. Executable Statements ..** Test the input parameters.* INFO = 0* IF( N.LT.0 ) THEN INFO = -2 ELSE IF( LDQ.LT.MAX( 1, N ) ) THEN INFO = -5 ELSE IF( MIN( 1, N ).GT.CUTPNT .OR. N.LT.CUTPNT ) THEN INFO = -8 ELSE IF( LDQ2.LT.MAX( 1, N ) ) THEN INFO = -12 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'DLAED2', -INFO ) RETURN END IF** Quick return if possible* IF( N.EQ.0 ) $ RETURN* N1 = CUTPNT N2 = N - N1 N1P1 = N1 + 1* IF( RHO.LT.ZERO ) THEN CALL DSCAL( N2, MONE, Z( N1P1 ), 1 ) END IF** Normalize z so that norm(z) = 1. Since z is the concatenation of* two normalized vectors, norm2(z) = sqrt(2).* T = ONE / SQRT( TWO ) DO 10 J = 1, N INDX( J ) = J 10 CONTINUE CALL DSCAL( N, T, Z, 1 )** RHO = ABS( norm(z)**2 * RHO )* RHO = ABS( TWO*RHO )* DO 20 I = 1, CUTPNT COLTYP( I ) = 1 20 CONTINUE DO 30 I = CUTPNT + 1, N COLTYP( I ) = 2 30 CONTINUE** Sort the eigenvalues into increasing order* DO 40 I = CUTPNT + 1, N INDXQ( I ) = INDXQ( I ) + CUTPNT 40 CONTINUE** re-integrate the deflated parts from the last pass* DO 50 I = 1, N DLAMDA( I ) = D( INDXQ( I ) ) W( I ) = Z( INDXQ( I ) ) INDXC( I ) = COLTYP( INDXQ( I ) ) 50 CONTINUE CALL DLAMRG( N1, N2, DLAMDA, 1, 1, INDX ) DO 60 I = 1, N D( I ) = DLAMDA( INDX( I ) ) Z( I ) = W( INDX( I ) ) COLTYP( I ) = INDXC( INDX( I ) ) 60 CONTINUE
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -