📄 dgetrf.f
字号:
SUBROUTINE DGETRF( M, N, A, LDA, IPIV, INFO ) Use numerics** -- LAPACK routine (version 1.0b) --* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,* Courant Institute, Argonne National Lab, and Rice University* February 29, 1992** .. Scalar Arguments .. INTEGER INFO, LDA, M, N* ..* .. Array Arguments .. INTEGER IPIV( * ) Real(l_) A( LDA, * )* ..** Purpose* =======** DGETRF computes an LU factorization of a general m-by-n matrix A* using partial pivoting with row interchanges.** The factorization has the form* A = P * L * U* where P is a permutation matrix, L is lower triangular with unit* diagonal elements (lower trapezoidal if m > n), and U is upper* triangular (upper trapezoidal if m < n).** This is the right-looking Level 3 BLAS version of the algorithm.** Arguments* =========** M (input) INTEGER* The number of rows of the matrix A. M >= 0.** N (input) INTEGER* The number of columns of the matrix A. N >= 0.** A (input/output) Real(l_) array, dimension (LDA,N)* On entry, the m by n matrix to be factored.* On exit, the factors L and U from the factorization* A = P*L*U; the unit diagonal elements of L are not stored.** LDA (input) INTEGER* The leading dimension of the array A. LDA >= max(1,M).** IPIV (output) INTEGER array, dimension (min(M,N))* The pivot indices; for 1 <= i <= min(M,N), row i of the* matrix was interchanged with row IPIV(i).** INFO (output) INTEGER* = 0: successful exit* < 0: if INFO = -k, the k-th argument had an illegal value* > 0: if INFO = k, U(k,k) is exactly zero. The factorization* has been completed, but the factor U is exactly* singular, and division by zero will occur if it is used* to solve a system of equations.** =====================================================================** .. Parameters .. Real(l_) ONE PARAMETER( ONE = 1.0_l_ )* ..* .. Local Scalars .. INTEGER I, IINFO, J, JB, NB* ..* .. External Subroutines .. EXTERNAL DGEMM, DGETF2, DLASWP, DTRSM, XERBLA* ..* .. External Functions .. INTEGER ILAENV EXTERNAL ILAENV* ..* .. Intrinsic Functions .. INTRINSIC MAX, MIN* ..* .. Executable Statements ..** Test the input parameters.* INFO = 0 IF( M.LT.0 ) THEN INFO = -1 ELSE IF( N.LT.0 ) THEN INFO = -2 ELSE IF( LDA.LT.MAX( 1, M ) ) THEN INFO = -4 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'DGETRF', -INFO ) RETURN END IF** Quick return if possible* IF( M.EQ.0 .OR. N.EQ.0 ) $ RETURN** Determine the block size for this environment.* NB = ILAENV( 1, 'DGETRF', ' ', M, N, -1, -1 ) IF( NB.LE.1 .OR. NB.GE.MIN( M, N ) ) THEN** Use unblocked code.* CALL DGETF2( M, N, A, LDA, IPIV, INFO ) ELSE** Use blocked code.* DO 20 J = 1, MIN( M, N ), NB JB = MIN( MIN( M, N )-J+1, NB )** Factor diagonal and subdiagonal blocks and test for exact* singularity.* CALL DGETF2( M-J+1, JB, A( J, J ), LDA, IPIV( J ), IINFO )** Adjust INFO and the pivot indices.* IF( INFO.EQ.0 .AND. IINFO.GT.0 ) $ INFO = IINFO + J - 1 DO 10 I = J, MIN( M, J+JB-1 ) IPIV( I ) = J - 1 + IPIV( I ) 10 CONTINUE** Apply interchanges to columns 1:J-1.* CALL DLASWP( J-1, A, LDA, J, J+JB-1, IPIV, 1 )* IF( J+JB.LE.N ) THEN** Apply interchanges to columns J+JB:N.* CALL DLASWP( N-J-JB+1, A( 1, J+JB ), LDA, J, J+JB-1, $ IPIV, 1 )** Compute block row of U.* CALL DTRSM( 'Left', 'Lower', 'No transpose', 'Unit', JB, $ N-J-JB+1, ONE, A( J, J ), LDA, A( J, J+JB ), $ LDA ) IF( J+JB.LE.M ) THEN** Update trailing submatrix.* CALL DGEMM( 'No transpose', 'No transpose', M-J-JB+1, $ N-J-JB+1, JB, -ONE, A( J+JB, J ), LDA, $ A( J, J+JB ), LDA, ONE, A( J+JB, J+JB ), $ LDA ) END IF END IF 20 CONTINUE END IF RETURN** End of DGETRF* END
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -