⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 dgetrf.f

📁 网络带宽测试工具
💻 F
字号:
      SUBROUTINE DGETRF( M, N, A, LDA, IPIV, INFO )      Use numerics**  -- LAPACK routine (version 1.0b) --*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,*     Courant Institute, Argonne National Lab, and Rice University*     February 29, 1992**     .. Scalar Arguments ..      INTEGER            INFO, LDA, M, N*     ..*     .. Array Arguments ..      INTEGER            IPIV( * )      Real(l_)   A( LDA, * )*     ..**  Purpose*  =======**  DGETRF computes an LU factorization of a general m-by-n matrix A*  using partial pivoting with row interchanges.**  The factorization has the form*     A = P * L * U*  where P is a permutation matrix, L is lower triangular with unit*  diagonal elements (lower trapezoidal if m > n), and U is upper*  triangular (upper trapezoidal if m < n).**  This is the right-looking Level 3 BLAS version of the algorithm.**  Arguments*  =========**  M       (input) INTEGER*          The number of rows of the matrix A.  M >= 0.**  N       (input) INTEGER*          The number of columns of the matrix A.  N >= 0.**  A       (input/output) Real(l_) array, dimension (LDA,N)*          On entry, the m by n matrix to be factored.*          On exit, the factors L and U from the factorization*          A = P*L*U; the unit diagonal elements of L are not stored.**  LDA     (input) INTEGER*          The leading dimension of the array A.  LDA >= max(1,M).**  IPIV    (output) INTEGER array, dimension (min(M,N))*          The pivot indices; for 1 <= i <= min(M,N), row i of the*          matrix was interchanged with row IPIV(i).**  INFO    (output) INTEGER*          = 0: successful exit*          < 0: if INFO = -k, the k-th argument had an illegal value*          > 0: if INFO = k, U(k,k) is exactly zero. The factorization*               has been completed, but the factor U is exactly*               singular, and division by zero will occur if it is used*               to solve a system of equations.**  =====================================================================**     .. Parameters ..      Real(l_)   ONE      PARAMETER( ONE = 1.0_l_ )*     ..*     .. Local Scalars ..      INTEGER            I, IINFO, J, JB, NB*     ..*     .. External Subroutines ..      EXTERNAL           DGEMM, DGETF2, DLASWP, DTRSM, XERBLA*     ..*     .. External Functions ..      INTEGER            ILAENV      EXTERNAL           ILAENV*     ..*     .. Intrinsic Functions ..      INTRINSIC          MAX, MIN*     ..*     .. Executable Statements ..**     Test the input parameters.*      INFO = 0      IF( M.LT.0 ) THEN         INFO = -1      ELSE IF( N.LT.0 ) THEN         INFO = -2      ELSE IF( LDA.LT.MAX( 1, M ) ) THEN         INFO = -4      END IF      IF( INFO.NE.0 ) THEN         CALL XERBLA( 'DGETRF', -INFO )         RETURN      END IF**     Quick return if possible*      IF( M.EQ.0 .OR. N.EQ.0 )     $   RETURN**     Determine the block size for this environment.*      NB = ILAENV( 1, 'DGETRF', ' ', M, N, -1, -1 )      IF( NB.LE.1 .OR. NB.GE.MIN( M, N ) ) THEN**        Use unblocked code.*         CALL DGETF2( M, N, A, LDA, IPIV, INFO )      ELSE**        Use blocked code.*         DO 20 J = 1, MIN( M, N ), NB            JB = MIN( MIN( M, N )-J+1, NB )**           Factor diagonal and subdiagonal blocks and test for exact*           singularity.*            CALL DGETF2( M-J+1, JB, A( J, J ), LDA, IPIV( J ), IINFO )**           Adjust INFO and the pivot indices.*            IF( INFO.EQ.0 .AND. IINFO.GT.0 )     $         INFO = IINFO + J - 1            DO 10 I = J, MIN( M, J+JB-1 )               IPIV( I ) = J - 1 + IPIV( I )   10       CONTINUE**           Apply interchanges to columns 1:J-1.*            CALL DLASWP( J-1, A, LDA, J, J+JB-1, IPIV, 1 )*            IF( J+JB.LE.N ) THEN**              Apply interchanges to columns J+JB:N.*               CALL DLASWP( N-J-JB+1, A( 1, J+JB ), LDA, J, J+JB-1,     $                      IPIV, 1 )**              Compute block row of U.*               CALL DTRSM( 'Left', 'Lower', 'No transpose', 'Unit', JB,     $                     N-J-JB+1, ONE, A( J, J ), LDA, A( J, J+JB ),     $                     LDA )               IF( J+JB.LE.M ) THEN**                 Update trailing submatrix.*                  CALL DGEMM( 'No transpose', 'No transpose', M-J-JB+1,     $                        N-J-JB+1, JB, -ONE, A( J+JB, J ), LDA,     $                        A( J, J+JB ), LDA, ONE, A( J+JB, J+JB ),     $                        LDA )               END IF            END IF   20    CONTINUE      END IF      RETURN**     End of DGETRF*      END

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -