📄 dgemm.f
字号:
SUBROUTINE DGEMM ( TRANSA, TRANSB, M, N, K, ALPHA, A, LDA, B, LDB, $ BETA, C, LDC ) Use numerics* .. Scalar Arguments .. CHARACTER*1 TRANSA, TRANSB INTEGER M, N, K, LDA, LDB, LDC Real(l_) ALPHA, BETA* .. Array Arguments .. Real(l_) A( LDA, * ), B( LDB, * ), C( LDC, * )* ..** Purpose* =======** DGEMM performs one of the matrix-matrix operations** C := alpha*op( A )*op( B ) + beta*C,** where op( X ) is one of** op( X ) = X or op( X ) = X',** alpha and beta are scalars, and A, B and C are matrices, with op( A )* an m by k matrix, op( B ) a k by n matrix and C an m by n matrix.** Parameters* ==========** TRANSA - CHARACTER*1.* On entry, TRANSA specifies the form of op( A ) to be used in* the matrix multiplication as follows:** TRANSA = 'N' or 'n', op( A ) = A.** TRANSA = 'T' or 't', op( A ) = A'.** TRANSA = 'C' or 'c', op( A ) = A'.** Unchanged on exit.** TRANSB - CHARACTER*1.* On entry, TRANSB specifies the form of op( B ) to be used in* the matrix multiplication as follows:** TRANSB = 'N' or 'n', op( B ) = B.** TRANSB = 'T' or 't', op( B ) = B'.** TRANSB = 'C' or 'c', op( B ) = B'.** Unchanged on exit.** M - INTEGER.* On entry, M specifies the number of rows of the matrix* op( A ) and of the matrix C. M must be at least zero.* Unchanged on exit.** N - INTEGER.* On entry, N specifies the number of columns of the matrix* op( B ) and the number of columns of the matrix C. N must be* at least zero.* Unchanged on exit.** K - INTEGER.* On entry, K specifies the number of columns of the matrix* op( A ) and the number of rows of the matrix op( B ). K must* be at least zero.* Unchanged on exit.** ALPHA - DOUBLE PRECISION.* On entry, ALPHA specifies the scalar alpha.* Unchanged on exit.** A - DOUBLE PRECISION array of DIMENSION ( LDA, ka ), where ka is* k when TRANSA = 'N' or 'n', and is m otherwise.* Before entry with TRANSA = 'N' or 'n', the leading m by k* part of the array A must contain the matrix A, otherwise* the leading k by m part of the array A must contain the* matrix A.* Unchanged on exit.** LDA - INTEGER.* On entry, LDA specifies the first dimension of A as declared* in the calling (sub) program. When TRANSA = 'N' or 'n' then* LDA must be at least max( 1, m ), otherwise LDA must be at* least max( 1, k ).* Unchanged on exit.** B - DOUBLE PRECISION array of DIMENSION ( LDB, kb ), where kb is* n when TRANSB = 'N' or 'n', and is k otherwise.* Before entry with TRANSB = 'N' or 'n', the leading k by n* part of the array B must contain the matrix B, otherwise* the leading n by k part of the array B must contain the* matrix B.* Unchanged on exit.** LDB - INTEGER.* On entry, LDB specifies the first dimension of B as declared* in the calling (sub) program. When TRANSB = 'N' or 'n' then* LDB must be at least max( 1, k ), otherwise LDB must be at* least max( 1, n ).* Unchanged on exit.** BETA - DOUBLE PRECISION.* On entry, BETA specifies the scalar beta. When BETA is* supplied as zero then C need not be set on input.* Unchanged on exit.** C - DOUBLE PRECISION array of DIMENSION ( LDC, n ).* Before entry, the leading m by n part of the array C must* contain the matrix C, except when beta is zero, in which* case C need not be set on entry.* On exit, the array C is overwritten by the m by n matrix* ( alpha*op( A )*op( B ) + beta*C ).** LDC - INTEGER.* On entry, LDC specifies the first dimension of C as declared* in the calling (sub) program. LDC must be at least* max( 1, m ).* Unchanged on exit.*** Level 3 Blas routine.** -- Written on 8-February-1989.* Jack Dongarra, Argonne National Laboratory.* Iain Duff, AERE Harwell.* Jeremy Du Croz, Numerical Algorithms Group Ltd.* Sven Hammarling, Numerical Algorithms Group Ltd.*** .. External Functions .. LOGICAL LSAME EXTERNAL LSAME* .. External Subroutines .. EXTERNAL XERBLA* .. Intrinsic Functions .. INTRINSIC MAX* .. Local Scalars .. LOGICAL NOTA, NOTB INTEGER I, INFO, J, L, NCOLA, NROWA, NROWB Real(l_) TEMP* .. Parameters .. Real(l_) ONE , ZERO PARAMETER( ONE = 1.0_l_, ZERO = 0.0_l_ )* ..* .. Executable Statements ..** Set NOTA and NOTB as true if A and B respectively are not* transposed and set NROWA, NCOLA and NROWB as the number of rows* and columns of A and the number of rows of B respectively.* NOTA = LSAME( TRANSA, 'N' ) NOTB = LSAME( TRANSB, 'N' ) IF( NOTA )THEN NROWA = M NCOLA = K ELSE NROWA = K NCOLA = M END IF IF( NOTB )THEN NROWB = K ELSE NROWB = N END IF** Test the input parameters.* INFO = 0 IF( ( .NOT.NOTA ).AND. $ ( .NOT.LSAME( TRANSA, 'C' ) ).AND. $ ( .NOT.LSAME( TRANSA, 'T' ) ) )THEN INFO = 1 ELSE IF( ( .NOT.NOTB ).AND. $ ( .NOT.LSAME( TRANSB, 'C' ) ).AND. $ ( .NOT.LSAME( TRANSB, 'T' ) ) )THEN INFO = 2 ELSE IF( M .LT.0 )THEN INFO = 3 ELSE IF( N .LT.0 )THEN INFO = 4 ELSE IF( K .LT.0 )THEN INFO = 5 ELSE IF( LDA.LT.MAX( 1, NROWA ) )THEN INFO = 8 ELSE IF( LDB.LT.MAX( 1, NROWB ) )THEN INFO = 10 ELSE IF( LDC.LT.MAX( 1, M ) )THEN INFO = 13 END IF IF( INFO.NE.0 )THEN CALL XERBLA( 'DGEMM ', INFO ) RETURN END IF** Quick return if possible.* IF( ( M.EQ.0 ).OR.( N.EQ.0 ).OR. $ ( ( ( ALPHA.EQ.ZERO ).OR.( K.EQ.0 ) ).AND.( BETA.EQ.ONE ) ) ) $ RETURN** And if alpha.eq.zero.* IF( ALPHA.EQ.ZERO )THEN IF( BETA.EQ.ZERO )THEN!$omp parallel do DO 20, J = 1, N DO 10, I = 1, M C( I, J ) = ZERO 10 CONTINUE 20 CONTINUE ELSE!$omp parallel do DO 40, J = 1, N DO 30, I = 1, M C( I, J ) = BETA*C( I, J ) 30 CONTINUE 40 CONTINUE END IF RETURN END IF** Start the operations.* IF( NOTB )THEN IF( NOTA )THEN** Form C := alpha*A*B + beta*C.*!$omp parallel do private(temp) DO 90, J = 1, N IF( BETA.EQ.ZERO )THEN DO 50, I = 1, M C( I, J ) = ZERO 50 CONTINUE ELSE IF( BETA.NE.ONE )THEN DO 60, I = 1, M C( I, J ) = BETA*C( I, J ) 60 CONTINUE END IF DO 80, L = 1, K IF( B( L, J ).NE.ZERO )THEN TEMP = ALPHA*B( L, J ) DO 70, I = 1, M C( I, J ) = C( I, J ) + TEMP*A( I, L ) 70 CONTINUE END IF 80 CONTINUE 90 CONTINUE ELSE** Form C := alpha*A'*B + beta*C*!$omp parallel do private(temp) DO 120, J = 1, N DO 110, I = 1, M TEMP = ZERO DO 100, L = 1, K TEMP = TEMP + A( L, I )*B( L, J ) 100 CONTINUE IF( BETA.EQ.ZERO )THEN C( I, J ) = ALPHA*TEMP ELSE C( I, J ) = ALPHA*TEMP + BETA*C( I, J ) END IF 110 CONTINUE 120 CONTINUE END IF ELSE IF( NOTA )THEN** Form C := alpha*A*B' + beta*C*!$omp parallel do private(temp) DO 170, J = 1, N IF( BETA.EQ.ZERO )THEN DO 130, I = 1, M C( I, J ) = ZERO 130 CONTINUE ELSE IF( BETA.NE.ONE )THEN DO 140, I = 1, M C( I, J ) = BETA*C( I, J ) 140 CONTINUE END IF DO 160, L = 1, K IF( B( J, L ).NE.ZERO )THEN TEMP = ALPHA*B( J, L ) DO 150, I = 1, M C( I, J ) = C( I, J ) + TEMP*A( I, L ) 150 CONTINUE END IF 160 CONTINUE 170 CONTINUE ELSE** Form C := alpha*A'*B' + beta*C*!$omp parallel do private(temp) DO 200, J = 1, N DO 190, I = 1, M TEMP = ZERO DO 180, L = 1, K TEMP = TEMP + A( L, I )*B( J, L ) 180 CONTINUE IF( BETA.EQ.ZERO )THEN C( I, J ) = ALPHA*TEMP ELSE C( I, J ) = ALPHA*TEMP + BETA*C( I, J ) END IF 190 CONTINUE 200 CONTINUE END IF END IF* RETURN** End of DGEMM .* END
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -