⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 dgemm.f

📁 网络带宽测试工具
💻 F
字号:
      SUBROUTINE DGEMM ( TRANSA, TRANSB, M, N, K, ALPHA, A, LDA, B, LDB,     $                   BETA, C, LDC )      Use numerics*     .. Scalar Arguments ..      CHARACTER*1        TRANSA, TRANSB      INTEGER            M, N, K, LDA, LDB, LDC      Real(l_)   ALPHA, BETA*     .. Array Arguments ..      Real(l_)   A( LDA, * ), B( LDB, * ), C( LDC, * )*     ..**  Purpose*  =======**  DGEMM  performs one of the matrix-matrix operations**     C := alpha*op( A )*op( B ) + beta*C,**  where  op( X ) is one of**     op( X ) = X   or   op( X ) = X',**  alpha and beta are scalars, and A, B and C are matrices, with op( A )*  an m by k matrix,  op( B )  a  k by n matrix and  C an m by n matrix.**  Parameters*  ==========**  TRANSA - CHARACTER*1.*           On entry, TRANSA specifies the form of op( A ) to be used in*           the matrix multiplication as follows:**              TRANSA = 'N' or 'n',  op( A ) = A.**              TRANSA = 'T' or 't',  op( A ) = A'.**              TRANSA = 'C' or 'c',  op( A ) = A'.**           Unchanged on exit.**  TRANSB - CHARACTER*1.*           On entry, TRANSB specifies the form of op( B ) to be used in*           the matrix multiplication as follows:**              TRANSB = 'N' or 'n',  op( B ) = B.**              TRANSB = 'T' or 't',  op( B ) = B'.**              TRANSB = 'C' or 'c',  op( B ) = B'.**           Unchanged on exit.**  M      - INTEGER.*           On entry,  M  specifies  the number  of rows  of the  matrix*           op( A )  and of the  matrix  C.  M  must  be at least  zero.*           Unchanged on exit.**  N      - INTEGER.*           On entry,  N  specifies the number  of columns of the matrix*           op( B ) and the number of columns of the matrix C. N must be*           at least zero.*           Unchanged on exit.**  K      - INTEGER.*           On entry,  K  specifies  the number of columns of the matrix*           op( A ) and the number of rows of the matrix op( B ). K must*           be at least  zero.*           Unchanged on exit.**  ALPHA  - DOUBLE PRECISION.*           On entry, ALPHA specifies the scalar alpha.*           Unchanged on exit.**  A      - DOUBLE PRECISION array of DIMENSION ( LDA, ka ), where ka is*           k  when  TRANSA = 'N' or 'n',  and is  m  otherwise.*           Before entry with  TRANSA = 'N' or 'n',  the leading  m by k*           part of the array  A  must contain the matrix  A,  otherwise*           the leading  k by m  part of the array  A  must contain  the*           matrix A.*           Unchanged on exit.**  LDA    - INTEGER.*           On entry, LDA specifies the first dimension of A as declared*           in the calling (sub) program. When  TRANSA = 'N' or 'n' then*           LDA must be at least  max( 1, m ), otherwise  LDA must be at*           least  max( 1, k ).*           Unchanged on exit.**  B      - DOUBLE PRECISION array of DIMENSION ( LDB, kb ), where kb is*           n  when  TRANSB = 'N' or 'n',  and is  k  otherwise.*           Before entry with  TRANSB = 'N' or 'n',  the leading  k by n*           part of the array  B  must contain the matrix  B,  otherwise*           the leading  n by k  part of the array  B  must contain  the*           matrix B.*           Unchanged on exit.**  LDB    - INTEGER.*           On entry, LDB specifies the first dimension of B as declared*           in the calling (sub) program. When  TRANSB = 'N' or 'n' then*           LDB must be at least  max( 1, k ), otherwise  LDB must be at*           least  max( 1, n ).*           Unchanged on exit.**  BETA   - DOUBLE PRECISION.*           On entry,  BETA  specifies the scalar  beta.  When  BETA  is*           supplied as zero then C need not be set on input.*           Unchanged on exit.**  C      - DOUBLE PRECISION array of DIMENSION ( LDC, n ).*           Before entry, the leading  m by n  part of the array  C must*           contain the matrix  C,  except when  beta  is zero, in which*           case C need not be set on entry.*           On exit, the array  C  is overwritten by the  m by n  matrix*           ( alpha*op( A )*op( B ) + beta*C ).**  LDC    - INTEGER.*           On entry, LDC specifies the first dimension of C as declared*           in  the  calling  (sub)  program.   LDC  must  be  at  least*           max( 1, m ).*           Unchanged on exit.***  Level 3 Blas routine.**  -- Written on 8-February-1989.*     Jack Dongarra, Argonne National Laboratory.*     Iain Duff, AERE Harwell.*     Jeremy Du Croz, Numerical Algorithms Group Ltd.*     Sven Hammarling, Numerical Algorithms Group Ltd.***     .. External Functions ..      LOGICAL            LSAME      EXTERNAL           LSAME*     .. External Subroutines ..      EXTERNAL           XERBLA*     .. Intrinsic Functions ..      INTRINSIC          MAX*     .. Local Scalars ..      LOGICAL            NOTA, NOTB      INTEGER            I, INFO, J, L, NCOLA, NROWA, NROWB      Real(l_)   TEMP*     .. Parameters ..      Real(l_)   ONE         , ZERO      PARAMETER( ONE = 1.0_l_, ZERO = 0.0_l_ )*     ..*     .. Executable Statements ..**     Set  NOTA  and  NOTB  as  true if  A  and  B  respectively are not*     transposed and set  NROWA, NCOLA and  NROWB  as the number of rows*     and  columns of  A  and the  number of  rows  of  B  respectively.*      NOTA  = LSAME( TRANSA, 'N' )      NOTB  = LSAME( TRANSB, 'N' )      IF( NOTA )THEN         NROWA = M         NCOLA = K      ELSE         NROWA = K         NCOLA = M      END IF      IF( NOTB )THEN         NROWB = K      ELSE         NROWB = N      END IF**     Test the input parameters.*      INFO = 0      IF(      ( .NOT.NOTA                 ).AND.     $         ( .NOT.LSAME( TRANSA, 'C' ) ).AND.     $         ( .NOT.LSAME( TRANSA, 'T' ) )      )THEN         INFO = 1      ELSE IF( ( .NOT.NOTB                 ).AND.     $         ( .NOT.LSAME( TRANSB, 'C' ) ).AND.     $         ( .NOT.LSAME( TRANSB, 'T' ) )      )THEN         INFO = 2      ELSE IF( M  .LT.0               )THEN         INFO = 3      ELSE IF( N  .LT.0               )THEN         INFO = 4      ELSE IF( K  .LT.0               )THEN         INFO = 5      ELSE IF( LDA.LT.MAX( 1, NROWA ) )THEN         INFO = 8      ELSE IF( LDB.LT.MAX( 1, NROWB ) )THEN         INFO = 10      ELSE IF( LDC.LT.MAX( 1, M     ) )THEN         INFO = 13      END IF      IF( INFO.NE.0 )THEN         CALL XERBLA( 'DGEMM ', INFO )         RETURN      END IF**     Quick return if possible.*      IF( ( M.EQ.0 ).OR.( N.EQ.0 ).OR.     $    ( ( ( ALPHA.EQ.ZERO ).OR.( K.EQ.0 ) ).AND.( BETA.EQ.ONE ) ) )     $   RETURN**     And if  alpha.eq.zero.*      IF( ALPHA.EQ.ZERO )THEN         IF( BETA.EQ.ZERO )THEN!$omp parallel do            DO 20, J = 1, N               DO 10, I = 1, M                  C( I, J ) = ZERO   10          CONTINUE   20       CONTINUE         ELSE!$omp parallel do            DO 40, J = 1, N               DO 30, I = 1, M                  C( I, J ) = BETA*C( I, J )   30          CONTINUE   40       CONTINUE         END IF         RETURN      END IF**     Start the operations.*      IF( NOTB )THEN         IF( NOTA )THEN**           Form  C := alpha*A*B + beta*C.*!$omp parallel do private(temp)            DO 90, J = 1, N               IF( BETA.EQ.ZERO )THEN                  DO 50, I = 1, M                     C( I, J ) = ZERO   50             CONTINUE               ELSE IF( BETA.NE.ONE )THEN                  DO 60, I = 1, M                     C( I, J ) = BETA*C( I, J )   60             CONTINUE               END IF               DO 80, L = 1, K                  IF( B( L, J ).NE.ZERO )THEN                     TEMP = ALPHA*B( L, J )                     DO 70, I = 1, M                        C( I, J ) = C( I, J ) + TEMP*A( I, L )   70                CONTINUE                  END IF   80          CONTINUE   90       CONTINUE         ELSE**           Form  C := alpha*A'*B + beta*C*!$omp parallel do private(temp)            DO 120, J = 1, N               DO 110, I = 1, M                  TEMP = ZERO                  DO 100, L = 1, K                     TEMP = TEMP + A( L, I )*B( L, J )  100             CONTINUE                  IF( BETA.EQ.ZERO )THEN                     C( I, J ) = ALPHA*TEMP                  ELSE                     C( I, J ) = ALPHA*TEMP + BETA*C( I, J )                  END IF  110          CONTINUE  120       CONTINUE         END IF      ELSE         IF( NOTA )THEN**           Form  C := alpha*A*B' + beta*C*!$omp parallel do private(temp)            DO 170, J = 1, N               IF( BETA.EQ.ZERO )THEN                  DO 130, I = 1, M                     C( I, J ) = ZERO  130             CONTINUE               ELSE IF( BETA.NE.ONE )THEN                  DO 140, I = 1, M                     C( I, J ) = BETA*C( I, J )  140             CONTINUE               END IF               DO 160, L = 1, K                  IF( B( J, L ).NE.ZERO )THEN                     TEMP = ALPHA*B( J, L )                     DO 150, I = 1, M                        C( I, J ) = C( I, J ) + TEMP*A( I, L )  150                CONTINUE                  END IF  160          CONTINUE  170       CONTINUE         ELSE**           Form  C := alpha*A'*B' + beta*C*!$omp parallel do private(temp)            DO 200, J = 1, N               DO 190, I = 1, M                  TEMP = ZERO                  DO 180, L = 1, K                     TEMP = TEMP + A( L, I )*B( J, L )  180             CONTINUE                  IF( BETA.EQ.ZERO )THEN                     C( I, J ) = ALPHA*TEMP                  ELSE                     C( I, J ) = ALPHA*TEMP + BETA*C( I, J )                  END IF  190          CONTINUE  200       CONTINUE         END IF      END IF*      RETURN**     End of DGEMM .*      END

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -