⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 dtrsm.f

📁 网络带宽测试工具
💻 F
字号:
      SUBROUTINE DTRSM ( SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA, A, LDA,     $                   B, LDB )      Use numerics*     .. Scalar Arguments ..      CHARACTER*1        SIDE, UPLO, TRANSA, DIAG      INTEGER            M, N, LDA, LDB      Real(l_)   ALPHA*     .. Array Arguments ..      Real(l_)   A( LDA, * ), B( LDB, * )*     ..**  Purpose*  =======**  DTRSM  solves one of the matrix equations**     op( A )*X = alpha*B,   or   X*op( A ) = alpha*B,**  where alpha is a scalar, X and B are m by n matrices, A is a unit, or*  non-unit,  upper or lower triangular matrix  and  op( A )  is one  of**     op( A ) = A   or   op( A ) = A'.**  The matrix X is overwritten on B.**  Parameters*  ==========**  SIDE   - CHARACTER*1.*           On entry, SIDE specifies whether op( A ) appears on the left*           or right of X as follows:**              SIDE = 'L' or 'l'   op( A )*X = alpha*B.**              SIDE = 'R' or 'r'   X*op( A ) = alpha*B.**           Unchanged on exit.**  UPLO   - CHARACTER*1.*           On entry, UPLO specifies whether the matrix A is an upper or*           lower triangular matrix as follows:**              UPLO = 'U' or 'u'   A is an upper triangular matrix.**              UPLO = 'L' or 'l'   A is a lower triangular matrix.**           Unchanged on exit.**  TRANSA - CHARACTER*1.*           On entry, TRANSA specifies the form of op( A ) to be used in*           the matrix multiplication as follows:**              TRANSA = 'N' or 'n'   op( A ) = A.**              TRANSA = 'T' or 't'   op( A ) = A'.**              TRANSA = 'C' or 'c'   op( A ) = A'.**           Unchanged on exit.**  DIAG   - CHARACTER*1.*           On entry, DIAG specifies whether or not A is unit triangular*           as follows:**              DIAG = 'U' or 'u'   A is assumed to be unit triangular.**              DIAG = 'N' or 'n'   A is not assumed to be unit*                                  triangular.**           Unchanged on exit.**  M      - INTEGER.*           On entry, M specifies the number of rows of B. M must be at*           least zero.*           Unchanged on exit.**  N      - INTEGER.*           On entry, N specifies the number of columns of B.  N must be*           at least zero.*           Unchanged on exit.**  ALPHA  - Real(l_).*           On entry,  ALPHA specifies the scalar  alpha. When  alpha is*           zero then  A is not referenced and  B need not be set before*           entry.*           Unchanged on exit.**  A      - Real(l_) array of DIMENSION ( LDA, k ), where k is m*           when  SIDE = 'L' or 'l'  and is  n  when  SIDE = 'R' or 'r'.*           Before entry  with  UPLO = 'U' or 'u',  the  leading  k by k*           upper triangular part of the array  A must contain the upper*           triangular matrix  and the strictly lower triangular part of*           A is not referenced.*           Before entry  with  UPLO = 'L' or 'l',  the  leading  k by k*           lower triangular part of the array  A must contain the lower*           triangular matrix  and the strictly upper triangular part of*           A is not referenced.*           Note that when  DIAG = 'U' or 'u',  the diagonal elements of*           A  are not referenced either,  but are assumed to be  unity.*           Unchanged on exit.**  LDA    - INTEGER.*           On entry, LDA specifies the first dimension of A as declared*           in the calling (sub) program.  When  SIDE = 'L' or 'l'  then*           LDA  must be at least  max( 1, m ),  when  SIDE = 'R' or 'r'*           then LDA must be at least max( 1, n ).*           Unchanged on exit.**  B      - Real(l_) array of DIMENSION ( LDB, n ).*           Before entry,  the leading  m by n part of the array  B must*           contain  the  right-hand  side  matrix  B,  and  on exit  is*           overwritten by the solution matrix  X.**  LDB    - INTEGER.*           On entry, LDB specifies the first dimension of B as declared*           in  the  calling  (sub)  program.   LDB  must  be  at  least*           max( 1, m ).*           Unchanged on exit.***  Level 3 Blas routine.***  -- Written on 8-February-1989.*     Jack Dongarra, Argonne National Laboratory.*     Iain Duff, AERE Harwell.*     Jeremy Du Croz, Numerical Algorithms Group Ltd.*     Sven Hammarling, Numerical Algorithms Group Ltd.***     .. External Functions ..      LOGICAL            LSAME      EXTERNAL           LSAME*     .. External Subroutines ..      EXTERNAL           XERBLA*     .. Intrinsic Functions ..      INTRINSIC          MAX*     .. Local Scalars ..      LOGICAL            LSIDE, NOUNIT, UPPER      INTEGER            I, INFO, J, K, NROWA      Real(l_)   TEMP*     .. Parameters ..      Real(l_)   ONE         , ZERO      PARAMETER( ONE = 1.0_l_, ZERO = 0.0_l_ )*     ..*     .. Executable Statements ..**     Test the input parameters.*      LSIDE  = LSAME( SIDE  , 'L' )      IF( LSIDE )THEN         NROWA = M      ELSE         NROWA = N      END IF      NOUNIT = LSAME( DIAG  , 'N' )      UPPER  = LSAME( UPLO  , 'U' )*      INFO   = 0      IF(      ( .NOT.LSIDE                ).AND.     $         ( .NOT.LSAME( SIDE  , 'R' ) )      )THEN         INFO = 1      ELSE IF( ( .NOT.UPPER                ).AND.     $         ( .NOT.LSAME( UPLO  , 'L' ) )      )THEN         INFO = 2      ELSE IF( ( .NOT.LSAME( TRANSA, 'N' ) ).AND.     $         ( .NOT.LSAME( TRANSA, 'T' ) ).AND.     $         ( .NOT.LSAME( TRANSA, 'C' ) )      )THEN         INFO = 3      ELSE IF( ( .NOT.LSAME( DIAG  , 'U' ) ).AND.     $         ( .NOT.LSAME( DIAG  , 'N' ) )      )THEN         INFO = 4      ELSE IF( M  .LT.0               )THEN         INFO = 5      ELSE IF( N  .LT.0               )THEN         INFO = 6      ELSE IF( LDA.LT.MAX( 1, NROWA ) )THEN         INFO = 9      ELSE IF( LDB.LT.MAX( 1, M     ) )THEN         INFO = 11      END IF      IF( INFO.NE.0 )THEN         CALL XERBLA( 'DTRSM ', INFO )         RETURN      END IF**     Quick return if possible.*      IF( N.EQ.0 )     $   RETURN**     And when  alpha.eq.zero.*      IF( ALPHA.EQ.ZERO )THEN         DO 20, J = 1, N            DO 10, I = 1, M               B( I, J ) = ZERO   10       CONTINUE   20    CONTINUE         RETURN      END IF**     Start the operations.*      IF( LSIDE )THEN         IF( LSAME( TRANSA, 'N' ) )THEN**           Form  B := alpha*inv( A )*B.*            IF( UPPER )THEN!$omp parallel do               DO 60, J = 1, N                  IF( ALPHA.NE.ONE )THEN                     DO 30, I = 1, M                        B( I, J ) = ALPHA*B( I, J )   30                CONTINUE                  END IF                  DO 50, K = M, 1, -1                     IF( B( K, J ).NE.ZERO )THEN                        IF( NOUNIT )     $                     B( K, J ) = B( K, J )/A( K, K )                        DO 40, I = 1, K - 1                           B( I, J ) = B( I, J ) - B( K, J )*A( I, K )   40                   CONTINUE                     END IF   50             CONTINUE   60          CONTINUE            ELSE!$omp parallel do               DO 100, J = 1, N                  IF( ALPHA.NE.ONE )THEN                     DO 70, I = 1, M                        B( I, J ) = ALPHA*B( I, J )   70                CONTINUE                  END IF                  DO 90 K = 1, M                     IF( B( K, J ).NE.ZERO )THEN                        IF( NOUNIT )     $                     B( K, J ) = B( K, J )/A( K, K )                        DO 80, I = K + 1, M                           B( I, J ) = B( I, J ) - B( K, J )*A( I, K )   80                   CONTINUE                     END IF   90             CONTINUE  100          CONTINUE            END IF         ELSE**           Form  B := alpha*inv( A' )*B.*            IF( UPPER )THEN!$omp parallel do private(temp)               DO 130, J = 1, N                  DO 120, I = 1, M                     TEMP = ALPHA*B( I, J )                     DO 110, K = 1, I - 1                        TEMP = TEMP - A( K, I )*B( K, J )  110                CONTINUE                     IF( NOUNIT )     $                  TEMP = TEMP/A( I, I )                     B( I, J ) = TEMP  120             CONTINUE  130          CONTINUE            ELSE!$omp parallel do private(temp)               DO 160, J = 1, N                  DO 150, I = M, 1, -1                     TEMP = ALPHA*B( I, J )                     DO 140, K = I + 1, M                        TEMP = TEMP - A( K, I )*B( K, J )  140                CONTINUE                     IF( NOUNIT )     $                  TEMP = TEMP/A( I, I )                     B( I, J ) = TEMP  150             CONTINUE  160          CONTINUE            END IF         END IF      ELSE         IF( LSAME( TRANSA, 'N' ) )THEN**           Form  B := alpha*B*inv( A ).*            IF( UPPER )THEN!$omp parallel do private(temp)               DO 210, J = 1, N                  IF( ALPHA.NE.ONE )THEN                     DO 170, I = 1, M                        B( I, J ) = ALPHA*B( I, J )  170                CONTINUE                  END IF                  DO 190, K = 1, J - 1                     IF( A( K, J ).NE.ZERO )THEN                        DO 180, I = 1, M                           B( I, J ) = B( I, J ) - A( K, J )*B( I, K )  180                   CONTINUE                     END IF  190             CONTINUE                  IF( NOUNIT )THEN                     TEMP = ONE/A( J, J )                     DO 200, I = 1, M                        B( I, J ) = TEMP*B( I, J )  200                CONTINUE                  END IF  210          CONTINUE            ELSE!$omp parallel do private(temp)               DO 260, J = N, 1, -1                  IF( ALPHA.NE.ONE )THEN                     DO 220, I = 1, M                        B( I, J ) = ALPHA*B( I, J )  220                CONTINUE                  END IF                  DO 240, K = J + 1, N                     IF( A( K, J ).NE.ZERO )THEN                        DO 230, I = 1, M                           B( I, J ) = B( I, J ) - A( K, J )*B( I, K )  230                   CONTINUE                     END IF  240             CONTINUE                  IF( NOUNIT )THEN                     TEMP = ONE/A( J, J )                     DO 250, I = 1, M                       B( I, J ) = TEMP*B( I, J )  250                CONTINUE                  END IF  260          CONTINUE            END IF         ELSE**           Form  B := alpha*B*inv( A' ).*            IF( UPPER )THEN!$omp parallel do private(temp)               DO 310, K = N, 1, -1                  IF( NOUNIT )THEN                     TEMP = ONE/A( K, K )                     DO 270, I = 1, M                        B( I, K ) = TEMP*B( I, K )  270                CONTINUE                  END IF                  DO 290, J = 1, K - 1                     IF( A( J, K ).NE.ZERO )THEN                        TEMP = A( J, K )                        DO 280, I = 1, M                           B( I, J ) = B( I, J ) - TEMP*B( I, K )  280                   CONTINUE                     END IF  290             CONTINUE                  IF( ALPHA.NE.ONE )THEN                     DO 300, I = 1, M                        B( I, K ) = ALPHA*B( I, K )  300                CONTINUE                  END IF  310          CONTINUE            ELSE!$omp parallel do private(temp)               DO 360, K = 1, N                  IF( NOUNIT )THEN                     TEMP = ONE/A( K, K )                     DO 320, I = 1, M                        B( I, K ) = TEMP*B( I, K )  320                CONTINUE                  END IF                  DO 340, J = K + 1, N                     IF( A( J, K ).NE.ZERO )THEN                        TEMP = A( J, K )                        DO 330, I = 1, M                           B( I, J ) = B( I, J ) - TEMP*B( I, K )  330                   CONTINUE                     END IF  340             CONTINUE                  IF( ALPHA.NE.ONE )THEN                     DO 350, I = 1, M                        B( I, K ) = ALPHA*B( I, K )  350                CONTINUE                  END IF  360          CONTINUE            END IF         END IF      END IF*      RETURN**     End of DTRSM .*      END

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -