⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 ssbmv.cu

📁 Nividia提供的CUDA的BLAS库源码
💻 CU
字号:
/* * Copyright 1993-2008 NVIDIA Corporation.  All rights reserved. * * NOTICE TO USER:    * * This source code is subject to NVIDIA ownership rights under U.S. and * international Copyright laws.   * * This software and the information contained herein is being provided  * under the terms and conditions of a Source Code License Agreement.      * * NVIDIA MAKES NO REPRESENTATION ABOUT THE SUITABILITY OF THIS SOURCE * CODE FOR ANY PURPOSE.  IT IS PROVIDED "AS IS" WITHOUT EXPRESS OR  * IMPLIED WARRANTY OF ANY KIND.  NVIDIA DISCLAIMS ALL WARRANTIES WITH * REGARD TO THIS SOURCE CODE, INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE. * IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL, * OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS * OF USE, DATA OR PROFITS,  WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE * OR OTHER TORTIOUS ACTION,  ARISING OUT OF OR IN CONNECTION WITH THE USE * OR PERFORMANCE OF THIS SOURCE CODE.   * * U.S. Government End Users.   This source code is a "commercial item" as  * that term is defined at  48 C.F.R. 2.101 (OCT 1995), consisting  of * "commercial computer  software"  and "commercial computer software  * documentation" as such terms are  used in 48 C.F.R. 12.212 (SEPT 1995) * and is provided to the U.S. Government only as a commercial end item. * Consistent with 48 C.F.R.12.212 and 48 C.F.R. 227.7202-1 through * 227.7202-4 (JUNE 1995), all U.S. Government End Users acquire the  * source code with only those rights set forth herein. *//* This file contains the implementation of the BLAS-2 function ssbmv */#include <stdlib.h>#include <assert.h>#include <string.h>#include <stdio.h>#include <limits.h>#include <ctype.h>#include <math.h>#include "cublas.h"   /* CUBLAS public header file  */#include "cublasP.h"  /* CUBLAS private header file */__global__ void ssbmvu_main (struct cublasSsbmvParams parms);__global__ void ssbmvl_main (struct cublasSsbmvParams parms);/* * void  * cublasSsbmv (char uplo, int n, int k, float alpha, const float *A, int lda, *              const float *x, int incx, float beta, float *y, int incy) * * performs the matrix-vector operation * *     y := alpha*A*x + beta*y * * alpha and beta are single precision scalars. x and y are single precision * vectors with n elements. A is an n by n symmetric band matrix consisting  * of single precision elements, with k super-diagonals and the same number * of subdiagonals. * * Input * ----- * uplo   specifies whether the upper or lower triangular part of the symmetric *        band matrix A is being supplied. If uplo == 'U' or 'u', the upper  *        triangular part is being supplied. If uplo == 'L' or 'l', the lower  *        triangular part is being supplied. * n      specifies the number of rows and the number of columns of the *        symmetric matrix A. n must be at least zero. * k      specifies the number of super-diagonals of matrix A. Since the matrix *        is symmetric, this is also the number of sub-diagonals. k must be at *        least zero. * alpha  single precision scalar multiplier applied to A*x. * A      single precision array of dimensions (lda, n). When uplo == 'U' or  *        'u', the leading (k + 1) x n part of array A must contain the upper *        triangular band of the symmetric matrix, supplied column by column, *        with the leading diagonal of the matrix in row (k+1) of the array, *        the first super-diagonal starting at position 2 in row k, and so on. *        The top left k x k triangle of the array A is not referenced. When *        uplo == 'L' or 'l', the leading (k + 1) x n part of the array A must *        contain the lower triangular band part of the symmetric matrix,  *        supplied column by column, with the leading diagonal of the matrix in *        row 1 of the array, the first sub-diagonal starting at position 1 in *        row 2, and so on. The bottom right k x k triangle of the array A is *        not referenced. * lda    leading dimension of A. lda must be at least (k + 1). * x      single precision array of length at least (1 + (n - 1) * abs(incx)). * incx   storage spacing between elements of x. incx must not be zero. * beta   single precision scalar multiplier applied to vector y. If beta is  *        zero, y is not read. * y      single precision array of length at least (1 + (n - 1) * abs(incy)).  *        If beta is zero, y is not read. * incy   storage spacing between elements of y. incy must not be zero. * * Output * ------ * y      updated according to alpha*A*x + beta*y * * Reference: http://www.netlib.org/blas/ssbmv.f * * Error status for this function can be retrieved via cublasGetError(). * * Error Status * ------------ * CUBLAS_STATUS_INVALID_VALUE    if k or n < 0, or if incx or incy == 0 * CUBLAS_STATUS_EXECUTION_FAILED if function failed to launch on GPU */__host__ void CUBLASAPI cublasSsbmv (char uplo, int n, int k, float alpha,                                      const float *A, int lda, const float *x,                                      int incx, float beta, float *y, int incy){    struct cublasContext *ctx = CUBLAS_GET_CTX();    struct cublasSsbmvParams params;    cudaError_t cudaStat;    int info = 0;    if (!cublasInitialized (ctx)) {        cublasSetError (ctx, CUBLAS_STATUS_NOT_INITIALIZED);        return;    }    /* check inputs */    if ((toupper (uplo) != 'U') &&        (toupper (uplo) != 'L')) {        info = 1;    }     else if (n < 0) {        info = 2;    }    else if (k < 0) {        info = 3;    }    else if (lda < (k + 1)) {        info = 6;    }    else if (incx == 0) {        info = 8;    }    else if (incy == 0) {        info = 11;    }    if (info) {        cublasXerbla ("SSBMV ", info);        cublasSetError (ctx, CUBLAS_STATUS_INVALID_VALUE);        return;    }    /* early out if nothing to do */    if ((n == 0) || ((alpha == 0.0f) && (beta == 1.0f))) {        return;    }    memset (&params, 0, sizeof(params));    params.up = toupper(uplo) == 'U';    params.n = n;    params.k = k;    params.alpha = alpha;    params.A = A;    params.lda = lda;    params.x = x;    params.incx = incx;    params.beta = beta;    params.y = y;    params.incy = incy;    cudaStat = cudaGetLastError(); /* clear error status */    if (params.up) {        ssbmvu_main<<<CUBLAS_SSBMV_CTAS,CUBLAS_SSBMV_THREAD_COUNT>>>(params);    } else {        ssbmvl_main<<<CUBLAS_SSBMV_CTAS,CUBLAS_SSBMV_THREAD_COUNT>>>(params);    }    cudaStat = cudaGetLastError(); /* check for launch error */    if (cudaStat != cudaSuccess) {        cublasSetError (ctx, CUBLAS_STATUS_EXECUTION_FAILED);    }}#define IDXA_UP(row,col)    ((parms.lda*(col))+(parms.k)+((row)-(col)))#define IDXA_LO(row,col)    ((parms.lda*(col))+((row)-(col)))#define IDXX(i)             (startx + ((i) * parms.incx))#define IDXY(i)             (starty + ((i) * parms.incy))#define X_ELEMS_PER_THREAD  (4)#define IINC                (CUBLAS_SSBMV_CTAS * CUBLAS_SSBMV_THREAD_COUNT)#define JINC                (CUBLAS_SSBMV_THREAD_COUNT * X_ELEMS_PER_THREAD)#define XINC                (CUBLAS_SSBMV_THREAD_COUNT)__shared__ float XX[JINC];  /* cached portion of vector x */__global__ void ssbmvu_main (struct cublasSsbmvParams parms) {    int i, ii, j, jj, idx, incr, tid;    float sdot;    int startx;    int starty;    /*     * NOTE: wrapper must ensure that parms.n >= 0, and that parms.incx and      *       parms.incy are != 0      */    tid = threadIdx.x;    startx = (parms.incx >= 0) ? 0 : ((1 - parms.n) * parms.incx);    starty = (parms.incy >= 0) ? 0 : ((1 - parms.n) * parms.incy);    for (i = 0; i < parms.n; i += IINC) {        /* first row being processed by this CTA */        ii = i + blockIdx.x * CUBLAS_SSBMV_THREAD_COUNT;        if (ii >= parms.n) break; /* nothing to do for this CTA */        ii += tid; /* row being processed by this thread */        sdot = 0.0f; /* initialize dot product handled by this thread */        /* iterate over chunks of rows. These chunks are very large, so         * in many case we'll only executed the loop body once, i.e. we'll         * process the whole row in one fell swoop.         */        for (j = 0; j < parms.n; j += JINC) {            int jjLimit = min (j + JINC, parms.n);            incr = XINC * parms.incx;            jj = j + tid;            __syncthreads ();            idx = IDXX(jj);#if (X_ELEMS_PER_THREAD == 4)            if (jj < (jjLimit - 3 * XINC)) {                XX[tid+0*XINC] = parms.alpha * parms.x[idx + 0 * incr];                XX[tid+1*XINC] = parms.alpha * parms.x[idx + 1 * incr];                XX[tid+2*XINC] = parms.alpha * parms.x[idx + 2 * incr];                XX[tid+3*XINC] = parms.alpha * parms.x[idx + 3 * incr];            }            else if (jj < (jjLimit - 2 * XINC)) {                XX[tid+0*XINC] = parms.alpha * parms.x[idx + 0 * incr];                XX[tid+1*XINC] = parms.alpha * parms.x[idx + 1 * incr];                XX[tid+2*XINC] = parms.alpha * parms.x[idx + 2 * incr];            }            else if (jj < (jjLimit - 1 * XINC)) {                XX[tid+0*XINC] = parms.alpha * parms.x[idx + 0 * incr];                XX[tid+1*XINC] = parms.alpha * parms.x[idx + 1 * incr];            }            else if (jj < (jjLimit - 0 * XINC)) {                XX[tid+0*XINC] = parms.alpha * parms.x[idx + 0 * incr];            }#else#error current code cannot handle X_ELEMS_PER_THREAD != 4#endif            __syncthreads ();                        if (ii < parms.n) { /* if this row is active, accumulate dp */                int jjStart = ii - parms.k; /* may be negative */                int jjEnd   = ii + parms.k + 1;                if ((jjEnd > j) && (jjStart < jjLimit)) {                    jj = max (j, jjStart);                    while (jj < (min (jjLimit, jjEnd))) {                        int idx = (ii < jj) ? IDXA_UP(ii,jj) : IDXA_UP(jj,ii);                        sdot += parms.A[idx] * XX[jj-j];                        jj++;                    }                }            }        }        if (ii < parms.n) { /* if this row is active, write out dp */            idx = IDXY(ii);            if (parms.beta != 0.0f) {                sdot += parms.beta * parms.y[idx];            }            parms.y[idx] = sdot;        }    }}__global__ void ssbmvl_main (struct cublasSsbmvParams parms) {    int i, ii, j, jj, idx, incr, tid;    float sdot;    int startx;    int starty;    /*     * NOTE: wrapper must ensure that parms.n >= 0, and that parms.incx and      *       parms.incy are != 0      */    tid = threadIdx.x;    startx = (parms.incx >= 0) ? 0 : ((1 - parms.n) * parms.incx);    starty = (parms.incy >= 0) ? 0 : ((1 - parms.n) * parms.incy);    for (i = 0; i < parms.n; i += IINC) {        /* first row being processed by this CTA */        ii = i + blockIdx.x * CUBLAS_SSBMV_THREAD_COUNT;        if (ii >= parms.n) break; /* nothing to do for this CTA */        ii += tid; /* row being processed by this thread */        sdot = 0.0f; /* initialize dot product handled by this thread */        /* iterate over chunks of rows. These chunks are very large, so         * in many case we'll only executed the loop body once, i.e. we'll         * process the whole row in one fell swoop.         */        for (j = 0; j < parms.n; j += JINC) {            int jjLimit = min (j + JINC, parms.n);            incr = XINC * parms.incx;            jj = j + tid;            __syncthreads ();            idx = IDXX(jj);#if (X_ELEMS_PER_THREAD == 4)            if (jj < (jjLimit - 3 * XINC)) {                XX[tid+0*XINC] = parms.alpha * parms.x[idx + 0 * incr];                XX[tid+1*XINC] = parms.alpha * parms.x[idx + 1 * incr];                XX[tid+2*XINC] = parms.alpha * parms.x[idx + 2 * incr];                XX[tid+3*XINC] = parms.alpha * parms.x[idx + 3 * incr];            }            else if (jj < (jjLimit - 2 * XINC)) {                XX[tid+0*XINC] = parms.alpha * parms.x[idx + 0 * incr];                XX[tid+1*XINC] = parms.alpha * parms.x[idx + 1 * incr];                XX[tid+2*XINC] = parms.alpha * parms.x[idx + 2 * incr];            }            else if (jj < (jjLimit - 1 * XINC)) {                XX[tid+0*XINC] = parms.alpha * parms.x[idx + 0 * incr];                XX[tid+1*XINC] = parms.alpha * parms.x[idx + 1 * incr];            }            else if (jj < (jjLimit - 0 * XINC)) {                XX[tid+0*XINC] = parms.alpha * parms.x[idx + 0 * incr];            }#else#error current code cannot handle X_ELEMS_PER_THREAD != 4#endif            __syncthreads ();                        if (ii < parms.n) { /* if this row is active, accumulate dp */                int jjStart = ii - parms.k; /* may be negative */                int jjEnd   = ii + parms.k + 1;                if ((jjEnd > j) && (jjStart < jjLimit)) {                    jj = max (j, jjStart);                    while (jj < (min (jjLimit, jjEnd))) {                        int idx = (ii > jj) ? IDXA_LO(ii,jj) : IDXA_LO(jj,ii);                        sdot += parms.A[idx] * XX[jj-j];                        jj++;                    }                }            }        }        if (ii < parms.n) { /* if this row is active, write out dp */            idx = IDXY(ii);            if (parms.beta != 0.0f) {                sdot += parms.beta * parms.y[idx];            }            parms.y[idx] = sdot;        }    }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -