📄 snrm2.cu
字号:
/* * Copyright 1993-2008 NVIDIA Corporation. All rights reserved. * * NOTICE TO USER: * * This source code is subject to NVIDIA ownership rights under U.S. and * international Copyright laws. * * This software and the information contained herein is being provided * under the terms and conditions of a Source Code License Agreement. * * NVIDIA MAKES NO REPRESENTATION ABOUT THE SUITABILITY OF THIS SOURCE * CODE FOR ANY PURPOSE. IT IS PROVIDED "AS IS" WITHOUT EXPRESS OR * IMPLIED WARRANTY OF ANY KIND. NVIDIA DISCLAIMS ALL WARRANTIES WITH * REGARD TO THIS SOURCE CODE, INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE. * IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL, * OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS * OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE * OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE * OR PERFORMANCE OF THIS SOURCE CODE. * * U.S. Government End Users. This source code is a "commercial item" as * that term is defined at 48 C.F.R. 2.101 (OCT 1995), consisting of * "commercial computer software" and "commercial computer software * documentation" as such terms are used in 48 C.F.R. 12.212 (SEPT 1995) * and is provided to the U.S. Government only as a commercial end item. * Consistent with 48 C.F.R.12.212 and 48 C.F.R. 227.7202-1 through * 227.7202-4 (JUNE 1995), all U.S. Government End Users acquire the * source code with only those rights set forth herein. *//* This file contains the implementation of the BLAS-1 function snrm2 */#include <stdlib.h>#include <assert.h>#include <string.h>#include <stdio.h>#include <limits.h>#include <math.h>#include "cublas.h" /* CUBLAS public header file */#include "cublasP.h" /* CUBLAS private header file */#define CUBLAS_SNRM2_STATE_ZERO 0#define CUBLAS_SNRM2_STATE_TINY 1#define CUBLAS_SNRM2_STATE_NORMAL 2#define CUBLAS_SNRM2_STATE_HUGE 3#define CUBLAS_SNRM2_STATE_DONE 4texture<float> texX;__global__ void snrm2_gld_main (struct cublasSnrm2Params parms);__global__ void snrm2_tex_main (struct cublasSnrm2Params parms);__host__ static float local_snrm2 (int n, const float *sx, int incx);/* * float * snrm2 (int n, const float *x, int incx) * * computes the Euclidean norm of the single precision n-vector x (with * storage increment incx). This code uses a multiphase model of * accumulation to avoid intermediate underflow and overflow. * * Input * ----- * n number of elements in input vector * x single precision vector with n elements * incx storage spacing between elements of x * * Output * ------ * returns Euclidian norm (0 if n <= 0 or incx <= 0, or if an error occurs) * * Reference: http://www.netlib.org/blas/snrm2.f * Reference: http://www.netlib.org/slatec/lin/snrm2.f * * Error status for this function can be retrieved via cublasGetError(). * * Error Status * ------------ * CUBLAS_STATUS_NOT_INITIALIZED if CUBLAS library has not been initialized * CUBLAS_STATUS_EXECUTION_FAILED if function failed to launch on GPU */__host__ float CUBLASAPI cublasSnrm2 (int n, const float *x, int incx){ struct cublasContext *ctx = CUBLAS_GET_CTX(); struct cublasSnrm2Params params; float *devPtrT; cublasStatus status; cudaError_t cudaStat; int nbrCtas; int threadsPerCta; float sum = 0.0f; float *tx; int sizeX = n * (imax (1, abs(incx))); size_t texXOfs = 0; int useTexture; if (!cublasInitialized (ctx)) { cublasSetError (ctx, CUBLAS_STATUS_NOT_INITIALIZED); return sum; } /* early out if nothing to do */ if ((n <= 0) || (incx <= 0)) { return sum; } if (n < CUBLAS_SNRM2_CTAS) { nbrCtas = n; threadsPerCta = CUBLAS_SNRM2_THREAD_COUNT; } else { nbrCtas = CUBLAS_SNRM2_CTAS; threadsPerCta = CUBLAS_SNRM2_THREAD_COUNT; } useTexture = sizeX < CUBLAS_MAX_1DBUF_SIZE; /* Currently, the overhead for using textures is high. Do not use texture * for vectors that are short, or those that are aligned and have unit * stride and thus have nicely coalescing GLDs. */ if ((n < 130000) || /* experimental bound */ ((sizeX == n) && (!(((uintptr_t) x) % CUBLAS_WORD_ALIGN)))) { useTexture = 0; } if (useTexture) { if ((cudaStat=cudaBindTexture (&texXOfs,texX,x,sizeX*sizeof(x[0]))) != cudaSuccess) { cublasSetError (ctx, CUBLAS_STATUS_MAPPING_ERROR); return sum; } texXOfs /= sizeof(x[0]); } /* allocate memory to collect results, one per CTA */ status = cublasAlloc (nbrCtas, sizeof(tx[0]), (void**)&devPtrT); if (status != CUBLAS_STATUS_SUCCESS) { cublasSetError (ctx, status); return sum; } /* allocate small buffer to retrieve the per-CTA results */ tx = (float *) calloc (nbrCtas, sizeof(tx[0])); if (!tx) { cublasFree (devPtrT); cublasSetError (ctx, CUBLAS_STATUS_ALLOC_FAILED); return sum; } memset (¶ms, 0, sizeof(params)); params.n = n; params.sx = x; params.incx = incx; params.result = devPtrT; params.texXOfs = (int)texXOfs; cudaStat = cudaGetLastError(); /* clear error status */ if (useTexture) { snrm2_tex_main<<<nbrCtas,threadsPerCta>>>(params); } else { snrm2_gld_main<<<nbrCtas,threadsPerCta>>>(params); } cudaStat = cudaGetLastError(); /* check for launch error */ if (cudaStat != cudaSuccess) { cublasFree (devPtrT); free (tx); cublasSetError (ctx, CUBLAS_STATUS_EXECUTION_FAILED); return sum; } /* Sum the results from each CTA */ status = cublasGetVector (nbrCtas, sizeof(tx[0]), devPtrT, 1, tx, 1); if (status != CUBLAS_STATUS_SUCCESS) { cublasFree (devPtrT); free (tx); cublasSetError (ctx, CUBLAS_STATUS_INTERNAL_ERROR); return sum; } sum = local_snrm2 (nbrCtas, tx, 1); status = cublasFree (devPtrT); if (status != CUBLAS_STATUS_SUCCESS) { cublasSetError (ctx, CUBLAS_STATUS_INTERNAL_ERROR); /* corruption ? */ } free (tx); if (useTexture) { if ((cudaStat = cudaUnbindTexture (texX)) != cudaSuccess) { cublasSetError (ctx, CUBLAS_STATUS_INTERNAL_ERROR); } } return sum; }/* * float snrm2 (int n, const float *sx, int incx); * * IN: n number of elements in input vector * sx single precision vector with n elements * incx storage spacing between elements of sx * * OUT: returns Euclidian norm (0 if n <= 0 or incx <= 0) * * BLAS level 1, see http://www.netlib.org/blas/snrm2.f * * Euclidean norm of the n-vector stored in sx with storage * increment incx. This version uses a multi-phase model of * accumulation to avoid intermediate underflow and overflow. * See http://www.netlib.org/slatec/lin/snrm2.f */__host__ static float local_snrm2 (int n, const float *sx, int incx){ float cutLo = 4.441e-16f; float cutHi = 1.304e+19f; unsigned int i, ns, state; volatile float sum = 0.0f; volatile float hiTest; volatile float t = 0.0f; volatile float ta = 0.0f; volatile float xmax = 0.0f; volatile float xmaxRecip; if ((n <= 0) || (incx <= 0)) { return sum; } ns = n * incx; hiTest = cutHi / (float)n; i = 0; state = CUBLAS_SNRM2_STATE_ZERO; while (state != CUBLAS_SNRM2_STATE_DONE) { switch (state) { case CUBLAS_SNRM2_STATE_ZERO: while ((i < ns) && ((t = sx[i]) == 0.0f)) { i += incx; } if (i >= ns) { state = CUBLAS_SNRM2_STATE_DONE; } else { state = CUBLAS_SNRM2_STATE_TINY; } break; case CUBLAS_SNRM2_STATE_TINY: xmax = (float)fabs(t); xmaxRecip = 1.0f / xmax; while ((i < ns) && ((ta = (float)fabs(t = sx[i])) < cutLo)) { if (ta > xmax) { /* Adjust scale factor */ t = xmax / t; sum = 1.0f + sum * t * t; xmax = ta; xmaxRecip = 1.0f / xmax; } else { t = t * xmaxRecip; sum += t * t; } i += incx; } if (i >= ns) { sum = (float)sqrt(sum); sum = xmax * sum; state = CUBLAS_SNRM2_STATE_DONE; } else { state = CUBLAS_SNRM2_STATE_NORMAL; } break; case CUBLAS_SNRM2_STATE_NORMAL: sum = (sum * xmax) * xmax; while ((i < ns) && ((ta = (float)fabs(t = sx[i])) < hiTest)) { sum += t * t; i += incx; } if (i >= ns) { sum = (float)sqrt(sum); state = CUBLAS_SNRM2_STATE_DONE; } else { state = CUBLAS_SNRM2_STATE_HUGE; } break; case CUBLAS_SNRM2_STATE_HUGE: xmax = ta; xmaxRecip = 1.0f / xmax; sum = (sum * xmaxRecip) * xmaxRecip; while (i < ns) { t = sx[i]; ta = (float)fabs(t); if (ta > xmax) { /* Adjust scale factor */ t = xmax / t; sum = 1.0f + sum * t * t; xmax = ta; xmaxRecip = 1.0f / xmax; } else { t = t * xmaxRecip; sum += t * t; } i += incx; } sum = (float)sqrt (sum); sum = xmax * sum; state = CUBLAS_SNRM2_STATE_DONE; break; } } return sum;}__shared__ float partialSum[CUBLAS_SNRM2_THREAD_COUNT];__global__ void snrm2_gld_main (struct cublasSnrm2Params parms) {#undef USE_TEX#define USE_TEX 0#include "snrm2.h"}__global__ void snrm2_tex_main (struct cublasSnrm2Params parms) {#undef USE_TEX#define USE_TEX 1#include "snrm2.h"}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -