⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 snrm2.h

📁 Nividia提供的CUDA的BLAS库源码
💻 H
字号:
/* * Copyright 1993-2008 NVIDIA Corporation.  All rights reserved. * * NOTICE TO USER:    * * This source code is subject to NVIDIA ownership rights under U.S. and * international Copyright laws.   * * This software and the information contained herein is being provided  * under the terms and conditions of a Source Code License Agreement.      * * NVIDIA MAKES NO REPRESENTATION ABOUT THE SUITABILITY OF THIS SOURCE * CODE FOR ANY PURPOSE.  IT IS PROVIDED "AS IS" WITHOUT EXPRESS OR  * IMPLIED WARRANTY OF ANY KIND.  NVIDIA DISCLAIMS ALL WARRANTIES WITH * REGARD TO THIS SOURCE CODE, INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE. * IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL, * OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS * OF USE, DATA OR PROFITS,  WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE * OR OTHER TORTIOUS ACTION,  ARISING OUT OF OR IN CONNECTION WITH THE USE * OR PERFORMANCE OF THIS SOURCE CODE.   * * U.S. Government End Users.   This source code is a "commercial item" as  * that term is defined at  48 C.F.R. 2.101 (OCT 1995), consisting  of * "commercial computer  software"  and "commercial computer software  * documentation" as such terms are  used in 48 C.F.R. 12.212 (SEPT 1995) * and is provided to the U.S. Government only as a commercial end item. * Consistent with 48 C.F.R.12.212 and 48 C.F.R. 227.7202-1 through * 227.7202-4 (JUNE 1995), all U.S. Government End Users acquire the  * source code with only those rights set forth herein. */#if (USE_TEX==1)#undef fetchx#undef fetchy#define fetchx(i)  tex1Dfetch(texX,parms.texXOfs+(i))#define fetchy(i)  tex1Dfetch(texY,parms.texYOfs+(i))#else#undef fetchx#undef fetchy#define fetchx(i)  sx[i]#define fetchy(i)  sy[i]#endif /* USE_TEX */    float cutLo = 4.441e-16f;    float cutHi = 1.304e+19f;    float sum, hiTest, t, ta, xmax, xmaxRecip;    unsigned int i, state;     unsigned int n, tid, totalThreads, ctaStart;    unsigned int ns;    unsigned int totalIncx;#if (USE_TEX==0)    const float *sx;#endif    /* NOTE: wrapper must ensure that parms.n > 0 and parms.incx > 0 */    tid = threadIdx.x;    n = parms.n;#if (USE_TEX==0)    sx = parms.sx;#endif    totalThreads = gridDim.x * CUBLAS_SNRM2_THREAD_COUNT;    ctaStart = CUBLAS_SNRM2_THREAD_COUNT * blockIdx.x;    ns = n * parms.incx;    totalIncx = totalThreads * parms.incx;    hiTest = cutHi / (float)n;    state = CUBLAS_SNRM2_STATE_ZERO;    sum = 0.0f;    xmax = 0.0f;    t = 0.0f;    ta = 0.0f;    i = (ctaStart + tid) * parms.incx;    while (state != CUBLAS_SNRM2_STATE_DONE) {        /* we'd like a switch statement here */        if (state == CUBLAS_SNRM2_STATE_ZERO) {            while (i < ns) {                if (!((t = fetchx(i)) == 0.0f)) {                    break;                }                   i += totalIncx;            }            state = (i >= ns) ? CUBLAS_SNRM2_STATE_DONE :                                 CUBLAS_SNRM2_STATE_TINY;            continue;        }        if (state == CUBLAS_SNRM2_STATE_TINY) {            xmax = fabsf(t);            xmaxRecip = 1.0f / xmax;            while (i < ns) {                if (!((ta = fabsf(t = fetchx(i))) < cutLo)) {                    break;                }                if (ta > xmax) {                    /* Adjust scale factor */                    t = xmax / t;                    sum = 1.0f + sum * t * t;                    xmax = ta;                    xmaxRecip = 1.0f / xmax;                } else {                    t = t * xmaxRecip;                    sum += t * t;                }                i += totalIncx;            }            if (i >= ns) {                sum = xmax * sqrtf(sum);                state = CUBLAS_SNRM2_STATE_DONE;            } else {                            state = CUBLAS_SNRM2_STATE_NORMAL;            }            continue;        }        if (state == CUBLAS_SNRM2_STATE_NORMAL) {            sum = (sum * xmax) * xmax;            while (i < ns) {                if (!((ta = fabsf(t = fetchx(i))) < hiTest)){                    break;                }                sum += t * t;                i += totalIncx;            }            if (i >= ns) {                sum = sqrtf(sum);                state = CUBLAS_SNRM2_STATE_DONE;            } else {                state = CUBLAS_SNRM2_STATE_HUGE;            }            continue;        }        if (state == CUBLAS_SNRM2_STATE_HUGE) {            xmax = ta;            xmaxRecip = 1.0f / xmax;            sum = (sum * xmaxRecip) * xmaxRecip;            while (i < ns) {                t = fetchx(i);                ta = fabsf(t);                if (ta > xmax) {                    /* Adjust scale factor */                    t = xmax / t;                    sum = 1.0f + sum * t * t;                    xmax = ta;                    xmaxRecip = 1.0f / xmax;                } else {                    t = t * xmaxRecip;                    sum += t * t;                }                i += totalIncx;            }            sum = xmax * sqrtf(sum);            state = CUBLAS_SNRM2_STATE_DONE;            continue;        }    }    partialSum[tid] = sum;    /*     * FIXME: Because of the relatively complex state machine needed     * to prevent overflow and underflow, right now we don't implement     * a binary reduction tree but use a simple loop instead. Obviously     * lower performance     */    __syncthreads();        /* let thread 0 sum the partial dot products for this CTA */    if (tid == 0) {        int nbrSums = CUBLAS_SNRM2_THREAD_COUNT;        i = 0;        state = CUBLAS_SNRM2_STATE_ZERO;        while (state != CUBLAS_SNRM2_STATE_DONE) {            /* we'd like a switch statement here */            if (state == CUBLAS_SNRM2_STATE_ZERO) {                sum = 0.0f;                while (i < nbrSums) {                    if (!((t = partialSum[i]) == 0.0f)) {                        break;                    }                    i++;                }                state = (i >= nbrSums) ? CUBLAS_SNRM2_STATE_DONE :                                          CUBLAS_SNRM2_STATE_TINY;                continue;            }            if (state == CUBLAS_SNRM2_STATE_TINY) {                xmax = fabsf(t);                xmaxRecip = 1.0f / xmax;                while (i < nbrSums) {                    if (!((ta = fabsf(t = partialSum[i])) < cutLo)) {                        break;                    }                    if (ta > xmax) {                        /* Adjust scale factor */                        t = xmax / t;                        sum = 1.0f + sum * t * t;                        xmax = ta;                        xmaxRecip = 1.0f / xmax;                    } else {                        t = t * xmaxRecip;                        sum += t * t;                    }                    i++;                 }                if (i >= nbrSums) {                    sum = xmax * sqrtf(sum);                    state = CUBLAS_SNRM2_STATE_DONE;                } else {                                state = CUBLAS_SNRM2_STATE_NORMAL;                }                continue;            }            if (state == CUBLAS_SNRM2_STATE_NORMAL) {                sum = (sum * xmax) * xmax;                while (i < nbrSums) {                    if (!((ta = fabsf(t = partialSum[i])) < hiTest)) {                        break;                    }                    sum += t * t;                    i++;                  }                if (i >= nbrSums) {                    sum = sqrtf(sum);                    state = CUBLAS_SNRM2_STATE_DONE;                } else {                    state = CUBLAS_SNRM2_STATE_HUGE;                }                continue;            }            if (state == CUBLAS_SNRM2_STATE_HUGE) {                xmax = ta;                xmaxRecip = 1.0f / xmax;                sum = (sum * xmaxRecip) * xmaxRecip;                while (i < nbrSums) {                    t = partialSum[i];                    ta = fabsf(t);                    if (ta > xmax) {                        /* Adjust scale factor */                        t = xmax / t;                        sum = 1.0f + sum * t * t;                        xmax = ta;                        xmaxRecip = 1.0f / xmax;                    } else {                        t = t * xmaxRecip;                        sum += t * t;                    }                    i++;                 }                sum = xmax * sqrtf (sum);                state = CUBLAS_SNRM2_STATE_DONE;                continue;            }        }        parms.result[blockIdx.x] = sum;    }

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -