📄 caxpy.cu
字号:
/* * Copyright 1993-2008 NVIDIA Corporation. All rights reserved. * * NOTICE TO USER: * * This source code is subject to NVIDIA ownership rights under U.S. and * international Copyright laws. * * This software and the information contained herein is being provided * under the terms and conditions of a Source Code License Agreement. * * NVIDIA MAKES NO REPRESENTATION ABOUT THE SUITABILITY OF THIS SOURCE * CODE FOR ANY PURPOSE. IT IS PROVIDED "AS IS" WITHOUT EXPRESS OR * IMPLIED WARRANTY OF ANY KIND. NVIDIA DISCLAIMS ALL WARRANTIES WITH * REGARD TO THIS SOURCE CODE, INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE. * IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL, * OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS * OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE * OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE * OR PERFORMANCE OF THIS SOURCE CODE. * * U.S. Government End Users. This source code is a "commercial item" as * that term is defined at 48 C.F.R. 2.101 (OCT 1995), consisting of * "commercial computer software" and "commercial computer software * documentation" as such terms are used in 48 C.F.R. 12.212 (SEPT 1995) * and is provided to the U.S. Government only as a commercial end item. * Consistent with 48 C.F.R.12.212 and 48 C.F.R. 227.7202-1 through * 227.7202-4 (JUNE 1995), all U.S. Government End Users acquire the * source code with only those rights set forth herein. *//* This file contains the implementation of the BLAS-1 function caxpy */#include <stdlib.h>#include <assert.h>#include <string.h>#include <stdio.h>#include <limits.h>#include <math.h>#include "cublas.h" /* CUBLAS public header file */#include "cublasP.h" /* CUBLAS private header file */__global__ void caxpy_main (struct cublasCaxpyParams parms);/* * void * cublasCaxpy (int n, cuComplex alpha, const cuComplex *x, int incx, * cuComplex *y, int incy) * * multiplies complex vector x by complex scalar alpha and adds the * result to complex vector y; that is, it overwrites complex y with * complex alpha * x + y. For i = 0 to n - 1, it replaces y[ly + i * incy] * with alpha * x[lx + i * incx] + y[ly + i * incy], where lx = 0 if incx * >= 0, else lx = 1 + (1 - n) * incx, and ly is defined in a similar way * using incy. * * Input * ----- * n number of elements in input vectors * alpha complex scalar multiplier * x complex vector with n elements * incx storage spacing between elements of x * y complex vector with n elements * incy storage spacing between elements of y * * Output * ------ * y complex result (unchanged if n <= 0) * * Reference: http://www.netlib.org/blas/caxpy.f * * Error status for this function can be retrieved via cublasGetError(). * * Error Status * ------------ * CUBLAS_STATUS_NOT_INITIALIZED if CUBLAS library has not been initialized * CUBLAS_STATUS_EXECUTION_FAILED if function failed to launch on GPU */__host__ void CUBLASAPI cublasCaxpy (int n, cuComplex alpha, const cuComplex *x, int incx, cuComplex *y, int incy){ struct cublasContext *ctx = CUBLAS_GET_CTX(); struct cublasCaxpyParams params; cudaError_t cudaStat; int nbrCtas; int elemsPerCta; int threadsPerCta; if (!cublasInitialized (ctx)) { cublasSetError (ctx, CUBLAS_STATUS_NOT_INITIALIZED); return; } /* early out if nothing to do */ if ((n <= 0) || ((fabsf (cuCrealf(alpha)) + fabsf (cuCimagf(alpha))) == 0.0f)){ return; } memset (¶ms, 0, sizeof(params)); params.n = n; params.cx = x; params.ca = alpha; params.incx = incx; params.cy = y; params.incy = incy; cublasVectorSplay (n, CUBLAS_CAXPY_THREAD_MIN, CUBLAS_CAXPY_THREAD_MAX, CUBLAS_CAXPY_CTAS_MAX, &nbrCtas, &elemsPerCta, &threadsPerCta); cudaStat = cudaGetLastError(); /* clear error status */ caxpy_main<<<nbrCtas,threadsPerCta>>>(params); cudaStat = cudaGetLastError(); /* check for launch error */ if (cudaStat != cudaSuccess) { cublasSetError (ctx, CUBLAS_STATUS_EXECUTION_FAILED); }}__global__ void caxpy_main (struct cublasCaxpyParams parms) { int i, n, tid, totalThreads, ctaStart; const cuComplex *cx; cuComplex *cy; /* NOTE: host wrapper must ensure that parms.n > 0 */ tid = threadIdx.x; n = parms.n; cx = parms.cx; cy = parms.cy; totalThreads = gridDim.x * blockDim.x; ctaStart = blockDim.x * blockIdx.x; if (parms.incy == 0) { if ((blockIdx.x == 0) && (tid == 0)) { /* FIXME: This code is functionally correct, but inefficient */ int ix = (parms.incx < 0) ? ((1 - parms.n) * parms.incx) : 0; cuComplex sum; sum.x = 0.0f; sum.y = 0.0f; for (i = 0; i < parms.n; i++) { sum = cuCaddf (sum, cuCmulf (parms.ca, cx[ix])); ix += parms.incx; } parms.cy[0] = cuCaddf (parms.cy[0], sum); } } else if ((parms.incx == parms.incy) && (parms.incx > 0)) { /* equal, positive, increments */ if (parms.incx == 1) { /* both increments equal to 1 */ for (i = ctaStart + tid; i < parms.n; i += totalThreads) { cy[i] = cuCaddf (cy[i], cuCmulf (parms.ca, cx[i])); } } else { /* equal, positive, non-unit increments. */ for (i = ctaStart + tid; i < parms.n; i += totalThreads) { cy[i*parms.incx] = cuCaddf (cy[i*parms.incx], cuCmulf(parms.ca,cx[i*parms.incx])); } } } else { /* unequal or nonpositive increments */ int ix = ((parms.incx < 0) ? ((1 - n) * parms.incx) : 0); int iy = ((parms.incy < 0) ? ((1 - n) * parms.incy) : 0); for (i = ctaStart + tid; i < parms.n; i += totalThreads) { cy[iy+i*parms.incy] = cuCaddf(cy[iy+i*parms.incy], cuCmulf(parms.ca,cx[ix+i*parms.incx])); } }}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -