⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 cgemm.cu

📁 Nividia提供的CUDA的BLAS库源码
💻 CU
📖 第 1 页 / 共 4 页
字号:
/* * Copyright 1993-2008 NVIDIA Corporation.  All rights reserved. * * NOTICE TO USER:    * * This source code is subject to NVIDIA ownership rights under U.S. and * international Copyright laws.   * * This software and the information contained herein is being provided  * under the terms and conditions of a Source Code License Agreement.      * * NVIDIA MAKES NO REPRESENTATION ABOUT THE SUITABILITY OF THIS SOURCE * CODE FOR ANY PURPOSE.  IT IS PROVIDED "AS IS" WITHOUT EXPRESS OR  * IMPLIED WARRANTY OF ANY KIND.  NVIDIA DISCLAIMS ALL WARRANTIES WITH * REGARD TO THIS SOURCE CODE, INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE. * IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL, * OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS * OF USE, DATA OR PROFITS,  WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE * OR OTHER TORTIOUS ACTION,  ARISING OUT OF OR IN CONNECTION WITH THE USE * OR PERFORMANCE OF THIS SOURCE CODE.   * * U.S. Government End Users.   This source code is a "commercial item" as  * that term is defined at  48 C.F.R. 2.101 (OCT 1995), consisting  of * "commercial computer  software"  and "commercial computer software  * documentation" as such terms are  used in 48 C.F.R. 12.212 (SEPT 1995) * and is provided to the U.S. Government only as a commercial end item. * Consistent with 48 C.F.R.12.212 and 48 C.F.R. 227.7202-1 through * 227.7202-4 (JUNE 1995), all U.S. Government End Users acquire the  * source code with only those rights set forth herein. *//* This file contains the implementation of the BLAS-3 function cgemm */#include <stdlib.h>#include <assert.h>#include <string.h>#include <stdio.h>#include <limits.h>#include <ctype.h>#include <math.h>#include "cublas.h"   /* CUBLAS public header file  */#include "cublasP.h"  /* CUBLAS private header file */// dimension m, counter i// dimension n, counter j// dimension k, counter l#if (CUBLAS_CGEMM_GRIDW!=CUBLAS_CGEMM_GRIDH)#error super tile is not square!#endif/* Use square 16x16 tiles to access and cache portions of source matrices A,B  * and result matrix C */#define TILE_DIM_LOG    (4)#define TILE_DIM        (1 << TILE_DIM_LOG)#define TILE_SIZE       (TILE_DIM*TILE_DIM)#define SUP_TILE_DIM    (TILE_DIM*CUBLAS_CGEMM_GRIDW)/* In cases where there are more tile elements than threads in a CTA, each * thread needs to walk through the tile. To keep the walking pattern simple, * we make sure that the number of threads is an integral multiple of the * number of elements (i.e. each thread deals with exactly the same number * of elements), and that tile dimension (number of rows / number of columns) * divides the thread count without remainder. After assigning an initial * element to each thread, the thread can then access further elements by  * remaining in the same tile row and merely stepping through columns that * are COL_INCR apart. */#if ((TILE_SIZE%CUBLAS_CGEMM_THREAD_COUNT)!=0)#error TILE_SIZE and THREAD_COUNT do not divide evenly!#endif#if ((CUBLAS_CGEMM_THREAD_COUNT%TILE_DIM)!=0)#error THREAD_COUNT and TILE_DIM do not divide evenly!#endif#define COL_INCR               (CUBLAS_CGEMM_THREAD_COUNT/TILE_DIM)#define C_ELEMS_PER_THREAD     (TILE_SIZE/CUBLAS_CGEMM_THREAD_COUNT)#define A_ELEMS_PER_THREAD     (TILE_SIZE/CUBLAS_CGEMM_THREAD_COUNT)#define B_ELEMS_PER_THREAD     (TILE_SIZE/CUBLAS_CGEMM_THREAD_COUNT)__global__ void cgemm_1_main_sw_gld (struct cublasCgemmParams parms);__global__ void cgemm_2_main_sw_gld (struct cublasCgemmParams parms);__global__ void cgemm_3_main_sw_gld (struct cublasCgemmParams parms);__global__ void cgemm_4_main_sw_gld (struct cublasCgemmParams parms);__global__ void cgemm_5_main_sw_gld (struct cublasCgemmParams parms);__global__ void cgemm_6_main_sw_gld (struct cublasCgemmParams parms);__global__ void cgemm_7_main_sw_gld (struct cublasCgemmParams parms);__global__ void cgemm_8_main_sw_gld (struct cublasCgemmParams parms);__global__ void cgemm_9_main_sw_gld (struct cublasCgemmParams parms);__global__ void cgemm_1_main_sw_gld_fulltile (struct cublasCgemmParams parms);__global__ void cgemm_2_main_sw_gld_fulltile (struct cublasCgemmParams parms);__global__ void cgemm_3_main_sw_gld_fulltile (struct cublasCgemmParams parms);__global__ void cgemm_4_main_sw_gld_fulltile (struct cublasCgemmParams parms);__global__ void cgemm_5_main_sw_gld_fulltile (struct cublasCgemmParams parms);__global__ void cgemm_6_main_sw_gld_fulltile (struct cublasCgemmParams parms);__global__ void cgemm_7_main_sw_gld_fulltile (struct cublasCgemmParams parms);__global__ void cgemm_8_main_sw_gld_fulltile (struct cublasCgemmParams parms);__global__ void cgemm_9_main_sw_gld_fulltile (struct cublasCgemmParams parms);__global__ void cgemm_1_main_hw_gld (struct cublasCgemmParams parms);__global__ void cgemm_2_main_hw_gld (struct cublasCgemmParams parms);__global__ void cgemm_3_main_hw_gld (struct cublasCgemmParams parms);__global__ void cgemm_4_main_hw_gld (struct cublasCgemmParams parms);__global__ void cgemm_5_main_hw_gld (struct cublasCgemmParams parms);__global__ void cgemm_6_main_hw_gld (struct cublasCgemmParams parms);__global__ void cgemm_7_main_hw_gld (struct cublasCgemmParams parms);__global__ void cgemm_8_main_hw_gld (struct cublasCgemmParams parms);__global__ void cgemm_9_main_hw_gld (struct cublasCgemmParams parms);__global__ void cgemm_1_main_hw_gld_fulltile (struct cublasCgemmParams parms);__global__ void cgemm_2_main_hw_gld_fulltile (struct cublasCgemmParams parms);__global__ void cgemm_3_main_hw_gld_fulltile (struct cublasCgemmParams parms);__global__ void cgemm_4_main_hw_gld_fulltile (struct cublasCgemmParams parms);__global__ void cgemm_5_main_hw_gld_fulltile (struct cublasCgemmParams parms);__global__ void cgemm_6_main_hw_gld_fulltile (struct cublasCgemmParams parms);__global__ void cgemm_7_main_hw_gld_fulltile (struct cublasCgemmParams parms);__global__ void cgemm_8_main_hw_gld_fulltile (struct cublasCgemmParams parms);__global__ void cgemm_9_main_hw_gld_fulltile (struct cublasCgemmParams parms);__global__ void cgemm_1_main_sw_tex (struct cublasCgemmParams parms);__global__ void cgemm_2_main_sw_tex (struct cublasCgemmParams parms);__global__ void cgemm_3_main_sw_tex (struct cublasCgemmParams parms);__global__ void cgemm_4_main_sw_tex (struct cublasCgemmParams parms);__global__ void cgemm_5_main_sw_tex (struct cublasCgemmParams parms);__global__ void cgemm_6_main_sw_tex (struct cublasCgemmParams parms);__global__ void cgemm_7_main_sw_tex (struct cublasCgemmParams parms);__global__ void cgemm_8_main_sw_tex (struct cublasCgemmParams parms);__global__ void cgemm_9_main_sw_tex (struct cublasCgemmParams parms);__global__ void cgemm_1_main_sw_tex_fulltile (struct cublasCgemmParams parms);__global__ void cgemm_2_main_sw_tex_fulltile (struct cublasCgemmParams parms);__global__ void cgemm_3_main_sw_tex_fulltile (struct cublasCgemmParams parms);__global__ void cgemm_4_main_sw_tex_fulltile (struct cublasCgemmParams parms);__global__ void cgemm_5_main_sw_tex_fulltile (struct cublasCgemmParams parms);__global__ void cgemm_6_main_sw_tex_fulltile (struct cublasCgemmParams parms);__global__ void cgemm_7_main_sw_tex_fulltile (struct cublasCgemmParams parms);__global__ void cgemm_8_main_sw_tex_fulltile (struct cublasCgemmParams parms);__global__ void cgemm_9_main_sw_tex_fulltile (struct cublasCgemmParams parms);__global__ void cgemm_1_main_hw_tex (struct cublasCgemmParams parms);__global__ void cgemm_2_main_hw_tex (struct cublasCgemmParams parms);__global__ void cgemm_3_main_hw_tex (struct cublasCgemmParams parms);__global__ void cgemm_4_main_hw_tex (struct cublasCgemmParams parms);__global__ void cgemm_5_main_hw_tex (struct cublasCgemmParams parms);__global__ void cgemm_6_main_hw_tex (struct cublasCgemmParams parms);__global__ void cgemm_7_main_hw_tex (struct cublasCgemmParams parms);__global__ void cgemm_8_main_hw_tex (struct cublasCgemmParams parms);__global__ void cgemm_9_main_hw_tex (struct cublasCgemmParams parms);__global__ void cgemm_1_main_hw_tex_fulltile (struct cublasCgemmParams parms);__global__ void cgemm_2_main_hw_tex_fulltile (struct cublasCgemmParams parms);__global__ void cgemm_3_main_hw_tex_fulltile (struct cublasCgemmParams parms);__global__ void cgemm_4_main_hw_tex_fulltile (struct cublasCgemmParams parms);__global__ void cgemm_5_main_hw_tex_fulltile (struct cublasCgemmParams parms);__global__ void cgemm_6_main_hw_tex_fulltile (struct cublasCgemmParams parms);__global__ void cgemm_7_main_hw_tex_fulltile (struct cublasCgemmParams parms);__global__ void cgemm_8_main_hw_tex_fulltile (struct cublasCgemmParams parms);__global__ void cgemm_9_main_hw_tex_fulltile (struct cublasCgemmParams parms);texture<float2> texA;texture<float2> texB;__shared__ float AA_r[(TILE_DIM+1)*TILE_DIM]; __shared__ float BB_r[(TILE_DIM+1)*TILE_DIM]; __shared__ float AA_i[(TILE_DIM+1)*TILE_DIM]; __shared__ float BB_i[(TILE_DIM+1)*TILE_DIM];typedef void (*pf) (struct cublasCgemmParams parms);static pf cgemm_hw[64] = {    cgemm_9_main_hw_gld, /* C = alpha*transpose(A)*transpose(B) + beta*C */    cgemm_8_main_hw_gld, /* C = alpha*transpose(A)*conjg(transpose(B)) + beta*C */    cgemm_7_main_hw_gld, /* C = alpha*conjg(transpose(A))*transpose(B) + beta*C */    cgemm_6_main_hw_gld, /* C = alpha*conjg(transpose(A))*conjg(transpose(B))+beta*C */    cgemm_3_main_hw_gld, /* C = alpha*transpose(A)*B + beta*C */    cgemm_3_main_hw_gld, /* C = alpha*transpose(A)*B + beta*C */    cgemm_2_main_hw_gld, /* C = alpha*conj(transpose(A))*B + beta*C */    cgemm_2_main_hw_gld, /* C = alpha*conj(transpose(A))*B + beta*C */    cgemm_5_main_hw_gld, /* C = alpha*A*transpose(B) + beta*C */    cgemm_4_main_hw_gld, /* C = alpha*A*conj(transpose(B)) + beta*C */    cgemm_5_main_hw_gld, /* C = alpha*A*transpose(B) + beta*C */    cgemm_4_main_hw_gld, /* C = alpha*A*conj(transpose(B)) + beta*C */    cgemm_1_main_hw_gld, /* C = alpha*A*B + beta*C */    cgemm_1_main_hw_gld, /* C = alpha*A*B + beta*C */    cgemm_1_main_hw_gld, /* C = alpha*A*B + beta*C */    cgemm_1_main_hw_gld, /* C = alpha*A*B + beta*C */    cgemm_9_main_hw_gld_fulltile,    cgemm_8_main_hw_gld_fulltile,    cgemm_7_main_hw_gld_fulltile,    cgemm_6_main_hw_gld_fulltile,    cgemm_3_main_hw_gld_fulltile,    cgemm_3_main_hw_gld_fulltile,    cgemm_2_main_hw_gld_fulltile,    cgemm_2_main_hw_gld_fulltile,    cgemm_5_main_hw_gld_fulltile,    cgemm_4_main_hw_gld_fulltile,    cgemm_5_main_hw_gld_fulltile,    cgemm_4_main_hw_gld_fulltile,    cgemm_1_main_hw_gld_fulltile,    cgemm_1_main_hw_gld_fulltile,    cgemm_1_main_hw_gld_fulltile,    cgemm_1_main_hw_gld_fulltile,    cgemm_9_main_hw_tex,    cgemm_8_main_hw_tex,    cgemm_7_main_hw_tex,    cgemm_6_main_hw_tex,    cgemm_3_main_hw_tex,    cgemm_3_main_hw_tex,    cgemm_2_main_hw_tex,    cgemm_2_main_hw_tex,    cgemm_5_main_hw_tex,    cgemm_4_main_hw_tex,    cgemm_5_main_hw_tex,    cgemm_4_main_hw_tex,    cgemm_1_main_hw_tex,    cgemm_1_main_hw_tex,    cgemm_1_main_hw_tex,    cgemm_1_main_hw_tex,    cgemm_9_main_hw_tex_fulltile,    cgemm_8_main_hw_tex_fulltile,    cgemm_7_main_hw_tex_fulltile,    cgemm_6_main_hw_tex_fulltile,    cgemm_3_main_hw_tex_fulltile,    cgemm_3_main_hw_tex_fulltile,    cgemm_2_main_hw_tex_fulltile,    cgemm_2_main_hw_tex_fulltile,    cgemm_5_main_hw_tex_fulltile,    cgemm_4_main_hw_tex_fulltile,    cgemm_5_main_hw_tex_fulltile,    cgemm_4_main_hw_tex_fulltile,    cgemm_1_main_hw_tex_fulltile,    cgemm_1_main_hw_tex_fulltile,    cgemm_1_main_hw_tex_fulltile,    cgemm_1_main_hw_tex_fulltile};static pf cgemm_sw[64] = {    cgemm_9_main_sw_gld, /* C=alpha*transpose(A)*transpose(B) + beta*C */    cgemm_8_main_hw_gld, /* C=alpha*transpose(A)*conjg(transpose(B)) + beta*C*/    cgemm_7_main_sw_gld, /* C=alpha*conjg(transpose(A))*transpose(B) + beta*C*/    cgemm_6_main_sw_gld, /* C=alpha*conjg(transpose(A))*conjg(transpose(B))+beta*C */    cgemm_3_main_sw_gld, /* C=alpha*transpose(A)*B + beta*C */    cgemm_3_main_sw_gld, /* C=alpha*transpose(A)*B + beta*C */    cgemm_2_main_sw_gld, /* C=alpha*conj(transpose(A))*B + beta*C */    cgemm_2_main_sw_gld, /* C=alpha*conj(transpose(A))*B + beta*C */    cgemm_5_main_sw_gld, /* C=alpha*A*transpose(B) + beta*C */    cgemm_4_main_sw_gld, /* C=alpha*A*conj(transpose(B)) + beta*C */    cgemm_5_main_sw_gld, /* C=alpha*A*transpose(B) + beta*C */    cgemm_4_main_sw_gld, /* C=alpha*A*conj(transpose(B)) + beta*C */    cgemm_1_main_sw_gld, /* C=alpha*A*B + beta*C */    cgemm_1_main_sw_gld, /* C=alpha*A*B + beta*C */    cgemm_1_main_sw_gld, /* C=alpha*A*B + beta*C */    cgemm_1_main_sw_gld, /* C=alpha*A*B + beta*C */    cgemm_9_main_sw_gld_fulltile,    cgemm_8_main_sw_gld_fulltile,    cgemm_7_main_sw_gld_fulltile,    cgemm_6_main_sw_gld_fulltile,    cgemm_3_main_sw_gld_fulltile,    cgemm_3_main_sw_gld_fulltile,    cgemm_2_main_sw_gld_fulltile,    cgemm_2_main_sw_gld_fulltile,    cgemm_5_main_sw_gld_fulltile,    cgemm_4_main_sw_gld_fulltile,    cgemm_5_main_sw_gld_fulltile,    cgemm_4_main_sw_gld_fulltile,    cgemm_1_main_sw_gld_fulltile,    cgemm_1_main_sw_gld_fulltile,    cgemm_1_main_sw_gld_fulltile,    cgemm_1_main_sw_gld_fulltile,    cgemm_9_main_sw_tex,    cgemm_8_main_sw_tex,    cgemm_7_main_sw_tex,    cgemm_6_main_sw_tex,    cgemm_3_main_sw_tex,    cgemm_3_main_sw_tex,    cgemm_2_main_sw_tex,    cgemm_2_main_sw_tex,    cgemm_5_main_sw_tex,    cgemm_4_main_sw_tex,    cgemm_5_main_sw_tex,    cgemm_4_main_sw_tex,    cgemm_1_main_sw_tex,    cgemm_1_main_sw_tex,    cgemm_1_main_sw_tex,    cgemm_1_main_sw_tex,    cgemm_9_main_sw_tex_fulltile,    cgemm_8_main_sw_tex_fulltile,    cgemm_7_main_sw_tex_fulltile,    cgemm_6_main_sw_tex_fulltile,    cgemm_3_main_sw_tex_fulltile,    cgemm_3_main_sw_tex_fulltile,    cgemm_2_main_sw_tex_fulltile,    cgemm_2_main_sw_tex_fulltile,    cgemm_5_main_sw_tex_fulltile,    cgemm_4_main_sw_tex_fulltile,    cgemm_5_main_sw_tex_fulltile,    cgemm_4_main_sw_tex_fulltile,    cgemm_1_main_sw_tex_fulltile,    cgemm_1_main_sw_tex_fulltile,    cgemm_1_main_sw_tex_fulltile,    cgemm_1_main_sw_tex_fulltile};/* * void cublasCgemm (char transa, char transb, int m, int n, int k,  *                   cuComplex alpha, const cuComplex *A, int lda,  *                   const cuComplex *B, int ldb, cuComplex beta,  *                   cuComplex *C, int ldc) * * cgemm performs one of the matrix-matrix operations * *    C = alpha * op(A) * op(B) + beta*C, * * where op(X) is one of * *    op(X) = X   or   op(X) = transpose  or  op(X) = conjg(transpose(X)) * * alpha and beta are single-complex scalars, and A, B and C are matrices * consisting of single-complex elements, with op(A) an m x k matrix, op(B) * a k x n matrix and C an m x n matrix. * * Input * ----- * transa specifies op(A). If transa == 'N' or 'n', op(A) = A. If transa ==  *        'T' or 't', op(A) = transpose(A). If transa == 'C' or 'c', op(A) =  *        conjg(transpose(A)). * transb specifies op(B). If transa == 'N' or 'n', op(B) = B. If transb ==  *        'T' or 't', op(B) = transpose(B). If transb == 'C' or 'c', op(B) =  *        conjg(transpose(B)). * m      number of rows of matrix op(A) and rows of matrix C. It must be at *        least zero. * n      number of columns of matrix op(B) and number of columns of C. It  *        must be at least zero. * k      number of columns of matrix op(A) and number of rows of op(B). It  *        must be at least zero. * alpha  single-complex scalar multiplier applied to op(A)op(B) * A      single-complex array of dimensions (lda, k) if transa ==  'N' or  *        'n'), and of dimensions (lda, m) otherwise. * lda    leading dimension of A. When transa == 'N' or 'n', it must be at  *        least max(1, m) and at least max(1, k) otherwise. * B      single-complex array of dimensions (ldb, n) if transb == 'N' or 'n',  *        and of dimensions (ldb, k) otherwise * ldb    leading dimension of B. When transb == 'N' or 'n', it must be at  *        least max(1, k) and at least max(1, n) otherwise. * beta   single-complex scalar multiplier applied to C. If beta is zero, C  *        does not have to be a valid input. * C      single precision array of dimensions (ldc, n) * ldc    leading dimension of C. Must be at least max(1, m). * * Output * ------ * C      updated according to C = alpha*op(A)*op(B) + beta*C * * Reference: http://www.netlib.org/blas/cgemm.f * * Error status for this function can be retrieved via cublasGetError(). * * Error Status * ------------ * CUBLAS_STATUS_NOT_INITIALIZED  if CUBLAS library has not been initialized * CUBLAS_STATUS_INVALID_VALUE    if any of m, n, or k are < 0 * CUBLAS_STATUS_EXECUTION_FAILED if function failed to launch on GPU */__host__ void CUBLASAPI cublasCgemm (char transa, char transb, int m, int n,                                     int k, cuComplex alpha,                                      const cuComplex *A, int lda,                                      const cuComplex *B, int ldb,                                     cuComplex beta, cuComplex *C, int ldc){    struct cublasContext *ctx = CUBLAS_GET_CTX();    struct cublasCgemmParams params;    cudaError_t cudaStat;    size_t texAOfs = 0;    size_t texBOfs = 0;    int nrowa, nrowb;    int notransa, notransb;    int conja, conjb;    int info = 0;    int usePureHwStepper;    int fullTilesOnly;    int useFastImul;    int useTexture;    int funcIdx;    int sizeA, sizeB;    dim3 ctaDimsHw (((n+TILE_DIM-1)/TILE_DIM), ((m+TILE_DIM-1)/TILE_DIM));    dim3 ctaDimsSw (CUBLAS_CGEMM_GRIDW, CUBLAS_CGEMM_GRIDH);    if (!cublasInitialized (ctx)) {        cublasSetError (ctx, CUBLAS_STATUS_NOT_INITIALIZED);        return;    }    nrowa = (toupper(transa) == 'N') ? m : k;    nrowb = (toupper(transb) == 'N') ? k : n;    if ((toupper(transa) != 'N') &&         (toupper(transa) != 'C') &&         (toupper(transa) != 'T')) {        info = 1;    }     else if ((toupper(transb) != 'N') &&              (toupper(transb) != 'C') &&              (toupper(transb) != 'T')) {        info = 2;    }    else if (m < 0) {        info = 3;    }    else if (n < 0) {        info = 4;    }    else if (k < 0) {        info = 5;    }    else if (lda < imax(1, nrowa)) {        info = 8;    }    else if (ldb < imax(1, nrowb)) {        info = 10;    }    else if (ldc < imax(1, m)) {        info = 13;    }    if (info) {        cublasXerbla ("CGEMM ", info);        cublasSetError (ctx, CUBLAS_STATUS_INVALID_VALUE);        return;    }    /* early out if nothing to do */    if ((m == 0) || (n == 0) ||         ((((cuCrealf(alpha) == 0.0f) && (cuCimagf(alpha) == 0.0f)) || (k == 0))          && ((cuCrealf(beta) == 1.0f) && (cuCimagf(beta) == 0.0f)))) {        return;    }    /* choose version using 24-bit multiplies if all dimensions are less than     * 1410, so we can guarantee that no intra-matrix address exceeds (1410 *     * 1410 * 8) < 2^24.     */    useFastImul =((lda < CUBLAS_FASTIMUL_D_MAX_DIM) &&                   (ldb < CUBLAS_FASTIMUL_D_MAX_DIM) &&                   (ldc < CUBLAS_FASTIMUL_D_MAX_DIM) &&                  (m   < CUBLAS_FASTIMUL_D_MAX_DIM) &&                   (n   < CUBLAS_FASTIMUL_D_MAX_DIM) &&                   (k   < CUBLAS_FASTIMUL_D_MAX_DIM));    if (useFastImul) {        cublasFastCgemm (ctx, transa, transb, m, n, k, alpha, A, lda, B, ldb,                          beta, C, ldc);        return;    }               sizeA = lda * ((toupper(transa) == 'N') ? k : m);    sizeB = ldb * ((toupper(transb) == 'N') ? n : k);       conja  = toupper(transa) == 'C';    conjb  = toupper(transb) == 'C';    notransa = toupper(transa) == 'N';    notransb = toupper(transb) == 'N';    /* We can only use texture if the matrices fit into the largest matrix      * size supported.     */    useTexture = ((sizeA < CUBLAS_MAX_1DBUF_SIZE) &&                  (sizeB < CUBLAS_MAX_1DBUF_SIZE));    /* choose HW-only stepping if dimensions of result matrix do not exceed the     * maximum CTA grid dimensions.     */    usePureHwStepper = ((m < (CUBLAS_CTA_MAX_DIM * TILE_DIM)) &&                        (n < (CUBLAS_CTA_MAX_DIM * TILE_DIM)));    /* we can eliminate checking for endcases if we know all tiles are fully     * populated. Important benchmark case!     */    fullTilesOnly = (((m % TILE_DIM) == 0) &&                     ((n % TILE_DIM) == 0) &&                     ((k % TILE_DIM) == 0));    /* currently, texture binding is expensive, so using texture fetches     * is a net negative for small cases. For matrices where each row is     * aligned, GLD coalesces nicely and is faster, so don't use texture.     */    if ((!(((ptrdiff_t) A) % CUBLAS_WORD_ALIGN) &&          !(((ptrdiff_t) B) % CUBLAS_WORD_ALIGN) &&         !(lda % (CUBLAS_WORD_ALIGN / sizeof(A[0]))) &&         !(ldb % (CUBLAS_WORD_ALIGN / sizeof(B[0]))))) {        useTexture = 0;    }        if (useTexture){        if ((cudaStat=cudaBindTexture (&texAOfs,texA,A,sizeA*sizeof(A[0]))) != cudaSuccess) {            cublasSetError (ctx, CUBLAS_STATUS_MAPPING_ERROR);            return;        }        if ((cudaStat=cudaBindTexture (&texBOfs,texB,B,sizeB*sizeof(B[0]))) != cudaSuccess) {            cudaUnbindTexture (texA);            cublasSetError (ctx, CUBLAS_STATUS_MAPPING_ERROR);            return;        }        texAOfs /= sizeof(A[0]);        texBOfs /= sizeof(B[0]);    }    memset (&params, 0, sizeof(params));    params.m = m;    params.n = n;    params.k = k;    params.alpha = alpha;    params.A = A;    params.lda = lda;    params.B = B;    params.ldb = ldb;    params.beta = beta;    params.C = C;    params.ldc =ldc;    params.texAOfs = (int)texAOfs;    params.texBOfs = (int)texBOfs;        funcIdx = ((useTexture << 5) | (fullTilesOnly << 4) | (notransa << 3) |                (notransb << 2) | (conja << 1) | (conjb << 0));    cudaStat = cudaGetLastError(); /* clear error status */    if (usePureHwStepper) {        cgemm_hw[funcIdx]<<<ctaDimsHw,CUBLAS_CGEMM_THREAD_COUNT>>>(params);    } else {        cgemm_sw[funcIdx]<<<ctaDimsSw,CUBLAS_CGEMM_THREAD_COUNT>>>(params);    }    cudaStat = cudaGetLastError(); /* check for launch error */    if (cudaStat != cudaSuccess) {        cublasSetError (ctx, CUBLAS_STATUS_EXECUTION_FAILED);    }

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -