📄 scnrm2.cu
字号:
/* * Copyright 1993-2008 NVIDIA Corporation. All rights reserved. * * NOTICE TO USER: * * This source code is subject to NVIDIA ownership rights under U.S. and * international Copyright laws. * * This software and the information contained herein is being provided * under the terms and conditions of a Source Code License Agreement. * * NVIDIA MAKES NO REPRESENTATION ABOUT THE SUITABILITY OF THIS SOURCE * CODE FOR ANY PURPOSE. IT IS PROVIDED "AS IS" WITHOUT EXPRESS OR * IMPLIED WARRANTY OF ANY KIND. NVIDIA DISCLAIMS ALL WARRANTIES WITH * REGARD TO THIS SOURCE CODE, INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE. * IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL, * OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS * OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE * OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE * OR PERFORMANCE OF THIS SOURCE CODE. * * U.S. Government End Users. This source code is a "commercial item" as * that term is defined at 48 C.F.R. 2.101 (OCT 1995), consisting of * "commercial computer software" and "commercial computer software * documentation" as such terms are used in 48 C.F.R. 12.212 (SEPT 1995) * and is provided to the U.S. Government only as a commercial end item. * Consistent with 48 C.F.R.12.212 and 48 C.F.R. 227.7202-1 through * 227.7202-4 (JUNE 1995), all U.S. Government End Users acquire the * source code with only those rights set forth herein. *//* This file contains the implementation of the BLAS-1 function scnrm2 */#include <stdlib.h>#include <assert.h>#include <string.h>#include <stdio.h>#include <limits.h>#include <math.h>#include "cublas.h" /* CUBLAS public header file */#include "cublasP.h" /* CUBLAS private header file */__global__ void scnrm2_main (struct cublasScnrm2Params parms);#define CUBLAS_SNRM2_STATE_ZERO 0#define CUBLAS_SNRM2_STATE_TINY 1#define CUBLAS_SNRM2_STATE_NORMAL 2#define CUBLAS_SNRM2_STATE_HUGE 3#define CUBLAS_SNRM2_STATE_DONE 4__host__ static float local_snrm2 (int n, const float *sx, int incx);__host__ static float local_snrm2 (int n, const float *sx, int incx){ float cutLo = 4.441e-16f; float cutHi = 1.304e+19f; int i, ns, state; volatile float sum = 0.0f; volatile float hiTest; volatile float t = 0.0f; volatile float ta = 0.0f; volatile float xmax = 0.0f; volatile float xmaxRecip; if ((n <= 0) || (incx <= 0)) { return sum; } ns = n * incx; hiTest = cutHi / (float)n; i = 0; state = CUBLAS_SNRM2_STATE_ZERO; while (state != CUBLAS_SNRM2_STATE_DONE) { switch (state) { case CUBLAS_SNRM2_STATE_ZERO: while ((i < ns) && ((t = sx[i]) == 0.0f)) { i += incx; } if (i >= ns) { state = CUBLAS_SNRM2_STATE_DONE; } else { state = CUBLAS_SNRM2_STATE_TINY; } break; case CUBLAS_SNRM2_STATE_TINY: xmax = (float)fabs(t); xmaxRecip = 1.0f / xmax; while ((i < ns) && ((ta = (float)fabs(t = sx[i])) < cutLo)) { if (ta > xmax) { /* Adjust scale factor */ t = xmax / t; sum = 1.0f + sum * t * t; xmax = ta; xmaxRecip = 1.0f / xmax; } else { t = t * xmaxRecip; sum += t * t; } i += incx; } if (i >= ns) { sum = (float)sqrt(sum); sum = xmax * sum; state = CUBLAS_SNRM2_STATE_DONE; } else { state = CUBLAS_SNRM2_STATE_NORMAL; } break; case CUBLAS_SNRM2_STATE_NORMAL: sum = (sum * xmax) * xmax; while ((i < ns) && ((ta = (float)fabs(t = sx[i])) < hiTest)) { sum += t * t; i += incx; } if (i >= ns) { sum = (float)sqrt(sum); state = CUBLAS_SNRM2_STATE_DONE; } else { state = CUBLAS_SNRM2_STATE_HUGE; } break; case CUBLAS_SNRM2_STATE_HUGE: xmax = ta; xmaxRecip = 1.0f / xmax; sum = (sum * xmaxRecip) * xmaxRecip; while (i < ns) { t = sx[i]; ta = (float)fabs(t); if (ta > xmax) { /* Adjust scale factor */ t = xmax / t; sum = 1.0f + sum * t * t; xmax = ta; xmaxRecip = 1.0f / xmax; } else { t = t * xmaxRecip; sum += t * t; } i += incx; } sum = (float)sqrt (sum); sum = xmax * sum; state = CUBLAS_SNRM2_STATE_DONE; break; } } return sum;}/* * float * cublasScnrm2 (int n, const cuComplex *x, int incx) * * computes the Euclidean norm of the single-complex n-vector x. This code * uses simple scaling to avoid intermediate underflow and overflow. * * Input * ----- * n number of elements in input vector * x single-complex vector with n elements * incx storage spacing between elements of x * * Output * ------ * returns Euclidian norm (0 if n <= 0 or incx <= 0, or if an error occurs) * * Reference: http://www.netlib.org/blas/scnrm2.f * * Error status for this function can be retrieved via cublasGetError(). * * Error Status * ------------ * CUBLAS_STATUS_NOT_INITIALIZED if CUBLAS library has not been initialized * CUBLAS_STATUS_EXECUTION_FAILED if function failed to launch on GPU */__host__ float CUBLASAPI cublasScnrm2 (int n, const cuComplex *x, int incx){ struct cublasContext *ctx = CUBLAS_GET_CTX(); struct cublasScnrm2Params params; float *devPtrT; cublasStatus status; cudaError_t cudaStat; int nbrCtas; int threadsPerCta; float sum = 0.0f; float *tx; if (!cublasInitialized (ctx)) { cublasSetError (ctx, CUBLAS_STATUS_NOT_INITIALIZED); return sum; } /* early out if nothing to do */ if ((n <= 0) || (incx <= 0)) { return sum; } if (n < CUBLAS_SCNRM2_CTAS) { nbrCtas = n; threadsPerCta = CUBLAS_SCNRM2_THREAD_COUNT; } else { nbrCtas = CUBLAS_SCNRM2_CTAS; threadsPerCta = CUBLAS_SCNRM2_THREAD_COUNT; } /* allocate memory to collect results, one per CTA */ status = cublasAlloc (nbrCtas, sizeof(tx[0]), (void**)&devPtrT); if (status != CUBLAS_STATUS_SUCCESS) { cublasSetError (ctx, status); return sum; } /* allocate small buffer to retrieve the per-CTA results */ tx = (float *) calloc (nbrCtas, sizeof(tx[0])); if (!tx) { cublasFree (devPtrT); cublasSetError (ctx, CUBLAS_STATUS_ALLOC_FAILED); return sum; } memset (¶ms, 0, sizeof(params)); params.n = n; params.cx = x; params.incx = incx; params.result = devPtrT; cudaStat = cudaGetLastError(); /* clear error status */ scnrm2_main<<<nbrCtas,threadsPerCta>>>(params); cudaStat = cudaGetLastError(); /* check for launch error */ if (cudaStat != cudaSuccess) { cublasFree (devPtrT); free (tx); cublasSetError (ctx, CUBLAS_STATUS_EXECUTION_FAILED); return sum; } /* Sum the results from each CTA */ status = cublasGetVector (nbrCtas, sizeof(tx[0]), devPtrT, 1, tx, 1); if (status != CUBLAS_STATUS_SUCCESS) { cublasFree (devPtrT); free (tx); cublasSetError (ctx, CUBLAS_STATUS_INTERNAL_ERROR); } sum = local_snrm2 (nbrCtas, tx, 1); status = cublasFree (devPtrT); if (status != CUBLAS_STATUS_SUCCESS) { cublasSetError (ctx, CUBLAS_STATUS_INTERNAL_ERROR); /* corruption ? */ } free (tx); return sum; }__global__ void scnrm2_main (struct cublasScnrm2Params parms) { float sum, scale, xmaxRecip; int i, state, ctaStart, totalThreads; int n, tid; float t = 0.0f; float ta = 0.0f; float xmax = 0.0f; int ns; int totalIncx; const cuComplex *cx; __shared__ float partialSum[CUBLAS_SCNRM2_THREAD_COUNT]; /* NOTE: wrapper must ensure that parms.n > 0 and parms.incx > 0 */ tid = threadIdx.x; n = parms.n; cx = parms.cx; totalThreads = gridDim.x * CUBLAS_SCNRM2_THREAD_COUNT; ctaStart = CUBLAS_SCNRM2_THREAD_COUNT * blockIdx.x; ns = n * parms.incx; totalIncx = totalThreads * parms.incx; scale = 0.0f; sum = 1.0f; i = (ctaStart + tid) * parms.incx; while (i < ns) { if ((ta = fabsf(cuCrealf (cx[i]))) != 0.0f) { if (scale < ta) { t = scale / ta; sum = 1.0f + sum * t * t; scale = ta; } else { t = ta / scale; sum = sum + t * t; } } if ((ta = fabsf(cuCimagf (cx[i]))) != 0.0f) { if (scale < ta) { t = scale / ta; sum = 1.0f + sum * t * t; scale = ta; } else { t = ta / scale; sum = sum + t * t; } } i += totalIncx; } partialSum[tid] = scale * sqrtf (sum); /* * FIXME: Because of the relatively complex state machine needed * to prevent overflow and underflow, right now we don't implement * a binary reduction tree but use a simple loop instead. Obviously * lower performance */ __syncthreads(); float cutLo = 4.441e-16f; float cutHi = 1.304e+19f; float hiTest; hiTest = cutHi / (float)n; /* let thread 0 sum the partial dot products for this CTA */ if (tid == 0) { int nbrSums = CUBLAS_SNRM2_THREAD_COUNT; i = 0; state = CUBLAS_SNRM2_STATE_ZERO; while (state != CUBLAS_SNRM2_STATE_DONE) { /* we'd like a switch statement here */ if (state == CUBLAS_SNRM2_STATE_ZERO) { sum = 0.0f; while (i < nbrSums) { if (!((t = partialSum[i]) == 0.0f)) { break; } i++; } state = (i >= nbrSums) ? CUBLAS_SNRM2_STATE_DONE : CUBLAS_SNRM2_STATE_TINY; continue; } if (state == CUBLAS_SNRM2_STATE_TINY) { xmax = fabsf(t); xmaxRecip = 1.0f / xmax; while (i < nbrSums) { if (!((ta = fabsf(t = partialSum[i])) < cutLo)) { break; } if (ta > xmax) { /* Adjust scale factor */ t = xmax / t; sum = 1.0f + sum * t * t; xmax = ta; xmaxRecip = 1.0f / xmax; } else { t = t * xmaxRecip; sum += t * t; } i++; } if (i >= nbrSums) { sum = xmax * sqrtf(sum); state = CUBLAS_SNRM2_STATE_DONE; } else { state = CUBLAS_SNRM2_STATE_NORMAL; } continue; } if (state == CUBLAS_SNRM2_STATE_NORMAL) { sum = (sum * xmax) * xmax; while (i < nbrSums) { if (!((ta = fabsf(t = partialSum[i])) < hiTest)) { break; } sum += t * t; i++; } if (i >= nbrSums) { sum = sqrtf(sum); state = CUBLAS_SNRM2_STATE_DONE; } else { state = CUBLAS_SNRM2_STATE_HUGE; } continue; } if (state == CUBLAS_SNRM2_STATE_HUGE) { xmax = ta; xmaxRecip = 1.0f / xmax; sum = (sum * xmaxRecip) * xmaxRecip; while (i < nbrSums) { t = partialSum[i]; ta = fabsf(t); if (ta > xmax) { /* Adjust scale factor */ t = xmax / t; sum = 1.0f + sum * t * t; xmax = ta; xmaxRecip = 1.0f / xmax; } else { t = t * xmaxRecip; sum += t * t; } i++; } sum = xmax * sqrtf (sum); state = CUBLAS_SNRM2_STATE_DONE; continue; } } parms.result[blockIdx.x] = sum; }}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -