⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 cdotc.cu

📁 Nividia提供的CUDA的BLAS库源码
💻 CU
字号:
/* * Copyright 1993-2008 NVIDIA Corporation.  All rights reserved. * * NOTICE TO USER:    * * This source code is subject to NVIDIA ownership rights under U.S. and * international Copyright laws.   * * This software and the information contained herein is being provided  * under the terms and conditions of a Source Code License Agreement.      * * NVIDIA MAKES NO REPRESENTATION ABOUT THE SUITABILITY OF THIS SOURCE * CODE FOR ANY PURPOSE.  IT IS PROVIDED "AS IS" WITHOUT EXPRESS OR  * IMPLIED WARRANTY OF ANY KIND.  NVIDIA DISCLAIMS ALL WARRANTIES WITH * REGARD TO THIS SOURCE CODE, INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE. * IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL, * OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS * OF USE, DATA OR PROFITS,  WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE * OR OTHER TORTIOUS ACTION,  ARISING OUT OF OR IN CONNECTION WITH THE USE * OR PERFORMANCE OF THIS SOURCE CODE.   * * U.S. Government End Users.   This source code is a "commercial item" as  * that term is defined at  48 C.F.R. 2.101 (OCT 1995), consisting  of * "commercial computer  software"  and "commercial computer software  * documentation" as such terms are  used in 48 C.F.R. 12.212 (SEPT 1995) * and is provided to the U.S. Government only as a commercial end item. * Consistent with 48 C.F.R.12.212 and 48 C.F.R. 227.7202-1 through * 227.7202-4 (JUNE 1995), all U.S. Government End Users acquire the  * source code with only those rights set forth herein. *//* This file contains the implementation of the BLAS-1 function cdotc */#include <stdlib.h>#include <assert.h>#include <string.h>#include <stdio.h>#include <limits.h>#include <math.h>#include "cublas.h"   /* CUBLAS public header file  */#include "cublasP.h"  /* CUBLAS private header file */texture<float2> texX;texture<float2> texY;__global__ void cdotc_gld_main (struct cublasCdotcParams parms);__global__ void cdotc_tex_main (struct cublasCdotcParams parms);/* * cuComplex  * cublasCdotc (int n, const cuComplex *x, int incx, const cuComplex *y,  *              int incy) * * computes the dot product of two single-complex vectors. It returns the  * dot product of the single-complex vectors x and y if successful, and complex * zero otherwise. It computes the sum for i = 0 to n - 1 of x[lx + i * incx] * * y[ly + i * incy], where lx = 1 if incx >= 0, else lx = 1 + (1 - n) * incx;  * ly is defined in a similar way using incy. * * Input * ----- * n      number of elements in input vectors * x      single-complex vector with n elements * incx   storage spacing between elements of x * y      single-complex vector with n elements * incy   storage spacing between elements of y * * Output * ------ * returns single-complex dot product (zero if n <= 0) * * Reference: http://www.netlib.org/blas/cdotc.f * * Error status for this function can be retrieved via cublasGetError(). * * Error Status * ------------ * CUBLAS_STATUS_NOT_INITIALIZED  if CUBLAS library has nor been initialized * CUBLAS_STATUS_EXECUTION_FAILED if function failed to execute on GPU */__host__ cuComplex CUBLASAPI cublasCdotc (int n, const cuComplex *x, int incx,                                           const cuComplex *y, int incy){    struct cublasContext *ctx = CUBLAS_GET_CTX();    struct cublasCdotcParams params;    cudaError_t cudaStat;    cublasStatus status;    cuComplex *devPtrT;    int nbrCtas;    int threadsPerCta;    cuComplex *tx;    cuComplex dot = make_cuComplex (0.0f, 0.0f);    int i;    int sizeX = n * (imax (1, abs(incx)));    int sizeY = n * (imax (1, abs(incy)));    size_t texXOfs = 0;    size_t texYOfs = 0;    int useTexture;    if (!cublasInitialized (ctx)) {        cublasSetError (ctx, CUBLAS_STATUS_NOT_INITIALIZED);        return dot;    }        if (n < CUBLAS_CDOTC_CTAS) {         nbrCtas = n;         threadsPerCta = CUBLAS_CDOTC_THREAD_COUNT;    } else {         nbrCtas = CUBLAS_CDOTC_CTAS;         threadsPerCta = CUBLAS_CDOTC_THREAD_COUNT;    }    /* early out if nothing to do */    if (n <= 0) {        return dot;    }    useTexture = ((sizeX < CUBLAS_MAX_1DBUF_SIZE) &&                  (sizeY < CUBLAS_MAX_1DBUF_SIZE));    /* Currently, the overhead for using textures is high. Do not use texture     * for vectors that are short, or those that are aligned and have unit     * stride and thus have nicely coalescing GLDs.     */    if ((n < 50000) || /* experimental bound */        ((sizeX == n) && (sizeY == n) &&          (!(((uintptr_t) x) % CUBLAS_LONG_ALIGN)) &&          (!(((uintptr_t) y) % CUBLAS_LONG_ALIGN)))) {        useTexture = 0;    }    if (useTexture) {        if ((cudaStat=cudaBindTexture (&texXOfs,texX,x,sizeX*sizeof(x[0]))) !=            cudaSuccess) {            cublasSetError (ctx, CUBLAS_STATUS_MAPPING_ERROR);            return dot;        }        if ((cudaStat=cudaBindTexture (&texYOfs,texY,y,sizeY*sizeof(y[0]))) !=            cudaSuccess) {            cudaUnbindTexture (texX);            cublasSetError (ctx, CUBLAS_STATUS_MAPPING_ERROR);            return dot;        }        texXOfs /= sizeof(x[0]);        texYOfs /= sizeof(y[0]);    }    /* allocate memory to collect results, one per CTA */    status = cublasAlloc (nbrCtas, sizeof(tx[0]), (void**)&devPtrT);    if (status != CUBLAS_STATUS_SUCCESS) {        cublasSetError (ctx, status);        return dot;    }    /* allocate small buffer to retrieve the per-CTA results */    tx = (cuComplex *) calloc (nbrCtas, sizeof(tx[0]));    if (!tx) {        cublasFree (devPtrT);        cublasSetError (ctx, CUBLAS_STATUS_ALLOC_FAILED);        return dot;    }    memset (&params, 0, sizeof(params));    params.n = n;    params.cx = x;    params.incx = incx;    params.cy = y;    params.incy = incy;    params.result = devPtrT;    params.texXOfs = (int)texXOfs;    params.texYOfs = (int)texYOfs;    cudaStat = cudaGetLastError(); /* clear error status */    if (useTexture) {        cdotc_tex_main<<<nbrCtas,threadsPerCta>>>(params);    } else {        cdotc_gld_main<<<nbrCtas,threadsPerCta>>>(params);    }           cudaStat = cudaGetLastError(); /* check for launch error */    if (cudaStat != cudaSuccess) {        cublasFree (devPtrT);        free (tx);        cublasSetError (ctx, CUBLAS_STATUS_EXECUTION_FAILED);        return dot;    }    /* Sum the results from each CTA */    status = cublasGetVector (nbrCtas, sizeof(tx[0]), devPtrT, 1, tx, 1);    if (status != CUBLAS_STATUS_SUCCESS) {        cublasFree (devPtrT);        free (tx);        cublasSetError (ctx, CUBLAS_STATUS_INTERNAL_ERROR);        return dot;    }        for (i = 0; i < nbrCtas; i++) {        dot = cuCaddf (dot, tx[i]);    }    status = cublasFree (devPtrT);    if (status != CUBLAS_STATUS_SUCCESS) {        cublasSetError (ctx, CUBLAS_STATUS_INTERNAL_ERROR); /* corruption ? */    }    free (tx);    if (useTexture) {        if ((cudaStat = cudaUnbindTexture (texX)) != cudaSuccess) {            cublasSetError (ctx, CUBLAS_STATUS_INTERNAL_ERROR);        }        if ((cudaStat = cudaUnbindTexture (texY)) != cudaSuccess) {            cublasSetError (ctx, CUBLAS_STATUS_INTERNAL_ERROR);        }    }    return dot;}__shared__ cuComplex partialSum[CUBLAS_CDOTU_THREAD_COUNT];        __global__ void cdotc_gld_main (struct cublasCdotcParams parms) {#undef  USE_TEX#define USE_TEX 0#include "cdotc.h"}__global__ void cdotc_tex_main (struct cublasCdotcParams parms) {#undef  USE_TEX#define USE_TEX 1#include "cdotc.h"}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -