📄 ssymv.cu
字号:
/* * Copyright 1993-2008 NVIDIA Corporation. All rights reserved. * * NOTICE TO USER: * * This source code is subject to NVIDIA ownership rights under U.S. and * international Copyright laws. * * This software and the information contained herein is being provided * under the terms and conditions of a Source Code License Agreement. * * NVIDIA MAKES NO REPRESENTATION ABOUT THE SUITABILITY OF THIS SOURCE * CODE FOR ANY PURPOSE. IT IS PROVIDED "AS IS" WITHOUT EXPRESS OR * IMPLIED WARRANTY OF ANY KIND. NVIDIA DISCLAIMS ALL WARRANTIES WITH * REGARD TO THIS SOURCE CODE, INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE. * IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL, * OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS * OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE * OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE * OR PERFORMANCE OF THIS SOURCE CODE. * * U.S. Government End Users. This source code is a "commercial item" as * that term is defined at 48 C.F.R. 2.101 (OCT 1995), consisting of * "commercial computer software" and "commercial computer software * documentation" as such terms are used in 48 C.F.R. 12.212 (SEPT 1995) * and is provided to the U.S. Government only as a commercial end item. * Consistent with 48 C.F.R.12.212 and 48 C.F.R. 227.7202-1 through * 227.7202-4 (JUNE 1995), all U.S. Government End Users acquire the * source code with only those rights set forth herein. *//* This file contains the implementation of the BLAS-2 function ssymv */#include <stdlib.h>#include <assert.h>#include <string.h>#include <stdio.h>#include <limits.h>#include <ctype.h>#include <math.h>#include "cublas.h" /* CUBLAS public header file */#include "cublasP.h" /* CUBLAS private header file */__global__ void ssymv_up_main (struct cublasSsymvParams parms);__global__ void ssymv_lo_main (struct cublasSsymvParams parms);/* * void * cublasSsymv (char uplo, int n, float alpha, const float *A, int lda, * const float *x, int incx, float beta, float *y, int incy) * * performs the matrix-vector operation * * y = alpha*A*x + beta*y * * Alpha and beta are single precision scalars, and x and y are single * precision vectors, each with n elements. A is a symmetric n x n matrix * consisting of single precision elements that is stored in either upper or * lower storage mode. * * Input * ----- * uplo specifies whether the upper or lower triangular part of the array A * is to be referenced. If uplo == 'U' or 'u', the symmetric matrix A * is stored in upper storage mode, i.e. only the upper triangular part * of A is to be referenced while the lower triangular part of A is to * be inferred. If uplo == 'L' or 'l', the symmetric matrix A is stored * in lower storage mode, i.e. only the lower triangular part of A is * to be referenced while the upper triangular part of A is to be * inferred. * n specifies the number of rows and the number of columns of the * symmetric matrix A. n must be at least zero. * alpha single precision scalar multiplier applied to A*x. * A single precision array of dimensions (lda, n). If uplo == 'U' or 'u', * the leading n x n upper triangular part of the array A must contain * the upper triangular part of the symmetric matrix and the strictly * lower triangular part of A is not referenced. If uplo == 'L' or 'l', * the leading n x n lower triangular part of the array A must contain * the lower triangular part of the symmetric matrix and the strictly * upper triangular part of A is not referenced. * lda leading dimension of A. It must be at least max (1, n). * x single precision array of length at least (1 + (n - 1) * abs(incx)). * incx storage spacing between elements of x. incx must not be zero. * beta single precision scalar multiplier applied to vector y. * y single precision array of length at least (1 + (n - 1) * abs(incy)). * If beta is zero, y is not read. * incy storage spacing between elements of y. incy must not be zero. * * Output * ------ * y updated according to y = alpha*A*x + beta*y * * Reference: http://www.netlib.org/blas/ssymv.f * * Error status for this function can be retrieved via cublasGetError(). * * Error Status * ------------ * CUBLAS_STATUS_NOT_INITIALIZED if CUBLAS library has not been initialized * CUBLAS_STATUS_INVALID_VALUE if n < 0, or if incx or incy == 0 * CUBLAS_STATUS_EXECUTION_FAILED if function failed to launch on GPU */__host__ void CUBLASAPI cublasSsymv (char uplo, int n, float alpha, const float *A, int lda, const float *x, int incx, float beta, float *y, int incy){ struct cublasContext *ctx = CUBLAS_GET_CTX(); struct cublasSsymvParams params; cudaError_t cudaStat; int info = 0; if (!cublasInitialized (ctx)) { cublasSetError (ctx, CUBLAS_STATUS_NOT_INITIALIZED); return; } /* check inputs */ if ((toupper (uplo) != 'U') && (toupper (uplo) != 'L')) { info = 1; } else if (n < 0) { info = 2; } else if (lda < imax (1, n)) { info = 5; } else if (incx == 0) { info = 7; } else if (incy == 0) { info = 10; } if (info) { cublasXerbla ("SSYMV ", info); cublasSetError (ctx, CUBLAS_STATUS_INVALID_VALUE); return; } /* early out if nothing to do */ if ((n == 0) || ((alpha == 0.0f) && (beta == 1.0f))) { return; } memset (¶ms, 0, sizeof(params)); params.up = toupper(uplo) == 'U'; params.n = n; params.alpha = alpha; params.A = A; params.lda = lda; params.x = x; params.incx = incx; params.beta = beta; params.y = y; params.incy = incy; cudaStat = cudaGetLastError(); /* clear error status */ if (params.up) { ssymv_up_main<<<CUBLAS_SSYMV_CTAS,CUBLAS_SSYMV_THREAD_COUNT>>>(params); } else { ssymv_lo_main<<<CUBLAS_SSYMV_CTAS,CUBLAS_SSYMV_THREAD_COUNT>>>(params); } cudaStat = cudaGetLastError(); /* check for launch error */ if (cudaStat != cudaSuccess) { cublasSetError (ctx, CUBLAS_STATUS_EXECUTION_FAILED); }}/* dimension m, counter i *//* dimension n, counter j *//* column-major ordering */#define IDXA(row,col) (parms.lda*(col)+(row))#define IDXX(i) (startx + ((i) * parms.incx))#define IDXY(i) (starty + ((i) * parms.incy))#define X_ELEMS_PER_THREAD (4)#define IINC (CUBLAS_SSYMV_CTAS * CUBLAS_SSYMV_THREAD_COUNT)#define JINC (CUBLAS_SSYMV_THREAD_COUNT * X_ELEMS_PER_THREAD)#define XINC (CUBLAS_SSYMV_THREAD_COUNT)__shared__ float XX[JINC]; /* cached portion of vector x */__global__ void ssymv_up_main (struct cublasSsymvParams parms) {#undef UPPER#define UPPER 1#include "ssymv.h"}__global__ void ssymv_lo_main (struct cublasSsymvParams parms){#undef UPPER#define UPPER 0#include "ssymv.h"}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -